
EFFICIENT STATIC ANALYSIS OF  

EXECUTABLES FOR DETECTING MALICIOUS BEHAVIORS 

 
THESIS 

 
Submitted in Partial Fulfillment 

of the REQUIREMENTS for the 

 
Degree of 

 
MASTER OF SCIENCE (Computer Science) 

at the 

POLYTECHNIC UNIVERSITY 

 
by 

 
Konstantin Rozinov 

 
June 2005 

 
 

____________________________ 
Advisor 

____________________________ 
Date 

____________________________ 
Department Head 

____________________________ 
Date 

 
Copy No. _______ 



 ii

Vita 

 

Oct 25, 1981………………….. Born - Lvov, Ukraine 

Sep 1999 – May 2003………... Bachelor of Science (Information Management), 

Polytechnic University, Brooklyn, NY 

Sep 2003 – May 2005………... Master of Science (Computer Science),  

Polytechnic University, Brooklyn, NY 

 
 



 iii

 

 

Acknowledgements 
 

I thank Professor Nasir Memon, my advisor, for his helpful opinions, 

guidance, and support during the course of this thesis and throughout my 

undergraduate and graduate studies at Polytechnic University.  I also thank Bjoern 

Luettmann, Ted Wroblicka, and Tom Reddington for their technical expertise and 

assistance during my internship at Bell Labs, where I began my preliminary 

research.  I also want to thank the SFS Program at Polytechnic University for its 

support during my graduate studies. 

 



 iv

AN ABSTRACT 

EFFICIENT STATIC ANALYSIS OF  

EXECUTABLES FOR DETECTING MALICIOUS BEHAVIORS 

by 

Konstantin Rozinov 

Advisor: Dr. Nasir Memon 

 

Submitted in Partial Fulfillment of the Requirements  

for the Degree of Master of Science (Computer Science) 

 

June 2005 

 
Today, many anti-virus (AV) scanners primarily detect viruses by looking 

for simple virus signatures within the file being scanned.  The signature of a virus 

is typically created by disassembling the virus into assembly code, analyzing it, and 

then selecting those sections of code that seem to be unique to the virus.  The 

binary bits of those unique sections become the signature for the virus.  However, 

this approach can be easily subverted by simply changing the virus’s code (and thus 

the virus signature) in trivial ways.  The FFSig is a virus signature that would 

encompass the sequence of API calls, instead of just a small bit of binary code (as 

shown above) which could be easily modified.  Thus, the problem we try to solve 

in this thesis is as follows:  Can an executable be efficiently and statically analyzed 



 v

to construct (extract), store, and compare a signature based on the sequence of 

Win32 API calls made by the executable? 

The first step is the disassembly of the target executable, which yields an 

assembly version of the code.  The first step also includes the analysis of the 

assembly code to simplify it and improve the analyzability of it.  This results in 

abstractions and high-level representations of the assembly code.  The second step 

is to extract certain malicious parts of the code in order to analyze it more closely.  

This step reduces and focuses the amount of code that has to be analyzed (in effect 

it decreases the complexity of the detection process).  This is accomplished by 

using slicing techniques on certain areas of the assembly code.   The third is to 

store the information from the slice using a finite state automaton (this becomes the 

signature).  The fourth and final step is to use various similarity measures to 

compare different signatures and then produce a report. 

 



 vi

 

 

Table of Contents 

1 Introduction .......................................................................................................1 

1.1 Motivation ....................................................................................................1 

1.2 Problem Statement........................................................................................2 

1.3 Contributions of the Thesis...........................................................................4 

1.4 Assumptions and Background Knowledge...................................................4 

1.5 Organization of the Thesis..........................................................................11 

2 Related Work...................................................................................................12 

3 Algorithm and Architecture Design ..............................................................15 

3.1 Disassembly and Analysis of Executable...................................................16 

3.2 Slicing Algorithm to Extract the Signature ................................................25 

3.3 An Automaton-Based Method for Storing the Signature ...........................44 

3.4 Similarity Measures for the Signatures ......................................................47 

4 Chapter 4..........................................................................................................55 

4.1 Conclusion..................................................................................................55 

4.2 Future Work................................................................................................56 

5 Appendixes.......................................................................................................58 

5.1 Appendix A: Functional Flows...................................................................58 

6 Bibliography ....................................................................................................63 



 vii

 

 

List of Figures 

Figure 1.  Using dumpbin to show the various segments of an executable............8 

Figure 2.  Overview of the system architecture. .....................................................16 

Figure 3.  Unpacking an executable using UPX. ....................................................18 

Figure 4.  Two parallel arrays of pointers...............................................................24 

Figure 5.  The original program (left), and some example slices of the program...26 

Figure 6.  A group of statements with a single successor.   Nodes C, D, and E form 

a set with a single successor, F, not in the set.  The flowgraph is shown before (left) 

and after (right) removing this set............................................................................27 

Figure 7.  Extract assembly code with an indexed jump statement. .......................28 

Figure 8.  Disassembled code for main() procedure of the test program in Figure 

9.  It is annotated with Use-Definition chains..........................................................30 

Figure 9.  Sample Test C program. .........................................................................31 

Figure 10.  Control Flow Graph, Program Dependence Tree, and Control 

Dependence Graph for the program in Figure 8. .....................................................31 

Figure 11.  Slice of program given in Figure 8 w.r.t. Register si at Instruction 11.

..................................................................................................................................32 

Figure 12.  Control flow graph of the program (left) and the assembly program 

code (right)...............................................................................................................35 

Figure 13.  A graph-based model............................................................................37 



 viii

Figure 14.  One possible partial preliminary signature extracted from a slice of the 

Bagle virus.  It contains API functions that are in the suspicious API database, as 

well as non-suspicious API functions that are not in that database. ........................42 

Figure 15.  One possible final FFSig for the Bagle virus is constructed by 

augmenting the signature in Figure 14.  The augmentation involves deleting non-

suspicious API functions and adding program state (the address of the call site) and 

loop information.......................................................................................................43 

Figure 16.  Derived FSA from the FFSig in Figure 15. ..........................................46 

Figure 17.  The Euclidean Distance Measure. ........................................................49 

Figure 18.  The Needleman-Wunsch Algorithm used in aligning DNA sequences.

..................................................................................................................................52 

Figure 19.  The sequence alignment algorithm in action on the sequences from 

Table 5.  Match = +1, Mismatch = 0. ......................................................................52 

Figure 20.  Cosine similarity measure. ...................................................................53 

Figure 21.  Jaccard Coefficient. ..............................................................................53 

Figure 22.  Examples of Pearson's Correlations.  (a) has a perfect positive linear 

relationship (+1).  (b) has a perfect negative linear relationship (-1).  (c) has a 

strong, but not perfect positive linear relationship.  (d) has no linear relationship 

(0).............................................................................................................................54 

Figure 23.  Pearson's Correlation. ...........................................................................54 



 ix

 

 

List of Tables 

Table 1.  Intel x86 registers.......................................................................................7 

Table 2.  Segments commonly found inside executables..........................................8 

Table 3.  Sequence of system calls with and without program state information...44 

Table 4.  Euclidean distance measure between FFSigs from Bagle.A and Bagle.B.

..................................................................................................................................50 

Table 5.  The effect of misalignment in the Euclidean distance measure. ..............51 



 x

 

 

List of Code 

Code 1.  The section table of Bagle.B virus showing UPX compression is used. ..18 

Code 2.  The MS-DOS header defined inside winnt.h. ......................................18 

Code 3.  Checking for the MS-DOS and PE signatures. .........................................19 

Code 4.  The address of the entry point into an executable is defined. ...................20 

Code 5.  Calculating the address of the entry point.................................................21 

Code 6.  Output form PEDUMP.EXE showing imported functions.......................23 

Code 7.  The subroutine in Bagle.A which makes contact with attacker websites.  

The gray portions of the code are the resulting intraprocedural slice w.r.t. hMem at 

location 00402D97. ...............................................................................................39 

 



 1

 

 

Chapter 1 

1 Introduction 

1.1 Motivation 

Today, many anti-virus (AV) scanners primarily detect viruses by looking for 

simple virus signatures within the file being scanned.  The signature of a virus is 

typically created by disassembling the virus into assembly code, analyzing it, and 

then selecting those sections of code that seem to be unique to the virus.  For 

example, the virus signature for the Chernobyl/CIH virus for one AV vendor is the 

following hexadecimal sequence [4]: 

E800 0000 005B 8D4B 4251 5050 
0F01 4C24 FE5B 83C3 1CFA 8B2B 

 

The binary bits of those unique sections become the signature for the virus.  

However, this approach can be easily subverted by simply changing the virus’s 

code (and thus the virus signature) in trivial ways.   

Most viruses in the wild today are of the "simple" type [1] - not encrypted 

or polymorphic, and many of them have variants that come out afterwards.  These 

variants are inherently similar to the original virus [2], yet current signatures fail to 

detect these variants [3] without further updates from AV vendors.  This indicates 



 2

that present-day signatures are too weak to withstand simple changes to the virus 

body (i.e. dates, port numbers, variable names, etc). 

The motivation for this research started in June 2004, when the author 

began to reverse code engineer (RCE) the first variant of the Bagle (a.k.a. Beagle) 

virus.  By August 2004, the author had fully reverse-engineered the virus by hand 

and noticed that the bodies of subsequent variants of the Bagle virus (there were 18 

such variants by July 2004) were very similar to the original [2].  The differences 

lay in variables such as the port number that the virus listened on, the dates it was 

active, the websites it contacted, how often it would contact those sites, filenames 

that the virus dropped into the Windows system directory, icon pictures, and the 

like.  The thing that changed much less often is the sequence of Win32 API calls 

made by the variants.  This constitutes the functional flow (or code flowchart) that 

the virus goes through to achieve its goal.  The steps and their order may vary 

slightly, but are generally very similar if not identical between successive variants.   

This discovery led to the idea of what the author dubbed Functional Flow 

Signature (FFSig).  The FFSig is a virus signature that would encompass the 

sequence of system calls, instead of just a small bit of binary code (as shown 

above) which could be easily modified.  This leads us to the problem statement 

below. 

 

1.2 Problem Statement 

Analysis of binaries and executables can be generally classified into two 

classes: static analysis and dynamic analysis.  Similarly, intrusion detection 



 3

techniques can be divided into the following two classes: misuse detection and 

anomaly detection.  Static analysis can be defined as the process of evaluating an 

executable based on its form, structure, and content, without actually executing the 

program.  Similarly, misuse detection is based on identifying and pattern-matching 

known signatures.  On the other hand, dynamic analysis of an executable can be 

defined as the process of evaluating that executable based solely on its behavior 

during execution.  Similarly, anomaly detection is based on learning normal 

behavior and then monitoring for abnormal deviations from the normal behavior.  It 

is generally accepted that signature-based schemes are very accurate, but suffer 

from the inability to detect new attacks, while schemes based on dynamic analysis 

and anomaly detection are able to detect new attacks, but suffer from the difficulty 

of learning normal behavior and a high false positive rate.   

Although there are several ways in which the FFSig could be generated, we 

focus our research on statically analyzing an executable.  We avoid dynamic 

analysis because we do not want to run a potentially dangerous executable on a live 

system for the obvious reasons.  We also avoid making any changes to the host 

system (Microsoft Windows) as is usually required when doing dynamic analysis 

and API hooking [9].  We utilize the research done by [5] in order to automatically 

and efficiently build a finite-state automaton (FSA) in order to remember the 

sequences of system calls.   

Thus, the problem we try to solve in this thesis is as follows:  Can an 

executable be efficiently and statically analyzed to construct (extract) and store a 

signature based on the sequence of Win32 API calls made by the executable, 



 4

followed by a slew of similarity measures to compare known and unknown 

signatures? 

 

1.3 Contributions of the Thesis 

Although much research has been conducted in the fields of static and 

dynamic analysis (see Related Work chapter), we believe that this thesis 

contributes something novel, namely a methodology for efficiently and statically 

analyzing a Windows executable, extracting specific sequences of Win32 API calls 

made by the executable, storing them efficiently by utilizing the method presented 

in [5], and then using several similarity measures to compare known and unknown 

signatures.  Our algorithm does not require any modification to the host operating 

system and does not require the executable to be run as it would if it was 

dynamically analyzed.  In addition, by only doing static analysis, this allows us to 

scan a large number of executables in a short period of time.  If this was done via 

dynamic analysis, one would have to wait until the executable was executed to 

analyze it. 

 

1.4 Assumptions and Background Knowledge 

There are several assumptions we make about the executable and the 

surrounding environment.  First, we assume that the host operating system is 

Microsoft Windows 2000 or XP.  Second, we assume that the executable is 

malicious in nature and cannot be executed on the system without infecting the 



 5

system.  Third, we assume that the executable is not compressed (packed) or 

encrypted.  The most popular compression algorithms are UPX, PEX, and ASPack, 

and it is trivial to decompress executables compressed with these packers.  We 

assume that the executable is written in C/C++ and is in the Portable Executable 

(PE) file format. 

To have a good understanding of the research presented in this thesis, we 

briefly review some of the most important concepts.  Mastery of the assembly 

language for the Intel chipset (x86) is by far the most important thing to have.  

With that, a solid understanding of how the various registers are used and their 

purposes is also required.  It’s important to note that the Intel processor accesses 

and stores memory in Little Endian order.  Little Endian means that the low-order 

byte of the number is stored in memory at the lowest address, and the high-order 

byte at the highest address.  For example, the following assembly instruction copies 

the value 1 into the EDX register: 

Assembly   Hexadecimal 
MOV EDX, 1       BA 01 00 00 00 

In hexadecimal, 1 would be represented as 00000001h (4 bytes).  However, since 

the Intel processor uses Little Endian order, it is stored and accessed as (lowest 

address) 01 00 00 00 (highest address).  The BA above is the hexadecimal 

representation of the MOV EDX, <immediate> instruction on the Intel 

processor. 

 In addition, we assume that the reader is familiar with other basic x86 

concepts, including registers, runtime data structures, and the stack.  For the 



 6

purpose of completeness, we include the following table which presents a summary 

of the various registers typically used and encountered in x86 assembly: 

 

Register Size (in bits) Purpose 
AX (EAX) 16 (32) Main register used in arithmetic calculations. Also 

known as accumulator, as it holds results of arithmetic 
operations and function return values. 

BX (EBX) 16 (32) The Base Register. Used to store the base address of the 
program. 

CX (ECX) 16 (32) The Counter register is often used to hold a value 
representing the number of times a process is to be 
repeated. Used for loop and string operations. 

DX (EDX) 16 (32) A general purpose register.  Also used for I/O operations. 
Helps extend EAX to 64-bits. 

SI (ESI) 16 (32) Source Index register. Used as an offset address in string 
and array operations.  It holds the address from where to 
read data. 

DI (EDI) 16 (32) Destination Index register. Used as an offset address in 
string and array operations.  It holds the implied write 
address of all string operations. 

BP (EBP) 16 (32) Base Pointer.  It points to the bottom of the current stack 
frame.  It is used to reference local variables. 

SP (ESP) 16 (32) Stack Pointer. It points to the top of the current stack 
frame. It is used to reference local variables. 

IP (EIP) 16 (32) The instruction pointer holds the address of the next 
instruction to be executed. 

CS 16 Code segment register.  Base 
location of code section (.text 
section).  Used for fetching 
instructions. 

DS 16 Data segment register. Default 
location for variables (.data 
section). Used for data accesses. 

ES 16 Extra segment register.  Used 
during string operations. 

SS 16 Stack segment register. Base 
location of the stack segment.  
Used when implicitly using SP or 
ESP or when explicitly using BP, 
EBP. 

These registers 
are used to break 
up a program into 
parts. As it 
executes, the 
segment registers 
are assigned the 
base values of 
each segment. 
From here, offset 
values are used to 
access each 
command in the 
program.1 

EFLAGS 32 This register’s bits represent several single-bit Boolean 
values, such as the sign, overflow, carry, and zero flags.  
It is modified after every mathematical operation.  See 

                                          
1 Modern operating system and applications use the (unsegmented or flat) memory model: all the 
segment registers are loaded with the same segment selector so that all memory references a 
program makes are to a single linear-address space [26].  In the old days (DOS and Windows 3.1), a 
segmented memory model was used, whereby the memory was broken up into 64KB chunks called 
segments. Each of the segment registers would then be loaded with different values to point to 
different segments.  A linear address would be calculated by taking the segment address, adding a 



 7

below for more information. 
Table 1. Intel x86 registers. 

We also include the following table which describes some common segments found 

inside executable images: 

Segment  Segment Description 
.text This segment contains the executable instructions and is shared among 

every process running the same binary.  This segment usually has READ 
and EXECUTE permissions only.  This section is the one most affected by 
optimization. 

.data Contains the initialized global and static variables and their values.  It is 
usually the largest part of the executable.  It usually has READ/WRITE 
permissions. 

.rdata Sometimes known as .rodata (read-only data) segment.  This contains 
constants and string literals. 

.bss BSS stands for "Block Started by Symbol."  It holds un-initialized global 
and static variables.  Since the BSS only holds variables that don't have 
any values yet, it doesn't actually need to store the image of these 
variables.  The size that BSS will require at runtime is recorded in the 
object file, but the BSS (unlike the data segment) doesn't take up any 
actual space in the object file. 

.reloc Stores the information required for relocating the image while loading. 
Heap The heap area is for dynamically allocated memory (malloc(), realloc(), 

calloc()) and is accessed through a pointer.  Everything on a heap is 
anonymous, thus you can only access parts of it through a pointer.  A 
malloc() request may be rounded up in size to some convenient power of 
two.  Freed memory goes back to the heap, but there is no easy way to 
give up that memory back to the OS. The heap usually grows up toward 
the stack. 
 
The end of the heap is marked by a pointer known as the "break."  You 
cannot reference past the break.  You can, however, move the break 
pointer (via brk and sbrk system calls) to a new position to increase the 
amount of heap memory available.  This is usually done automatically for 
you by the system if you use malloc often enough. 

Stack The stack holds local (automatic) variables, temporary information, 
function parameters, and the like.  It acts like a LIFO (Last In First Out) 
object as it grows downward toward the heap. 
 
When a function is called, a stack frame (or a procedure activation record) 
is created and PUSHed onto the top of the stack.  This stack frame 
contains information such as the address from which the function was 
called (and where to jump back to when the function is finished (return 
address)), parameters, local variables, and any other information needed 
by the invoked function.  The order of the information varies by system 
and compiler, but on Solaris it is described in /usr/include/sys/frame.h.  
When a function returns, the stack frame is POPped from the stack.  The 
current instruction that is running is pointed to by the IP (Instruction 

                                                                                                                   
hexadecimal 0 to it, and then adding the offset.  The 20-bit addresses were held by two 16-bit 
registers.  In addition, the flat memory model on the x86 uses only near pointers (32 bits), while far 
pointers (48 bits) were needed with a segmented memory model in order to specify the segment and 
offset within the segment. 



 8

Pointer).  The address of the next instruction is held in the PC (Program 
Counter). 

Table 2. Segments commonly found inside executables. 

For example, Figure 1 shows the various sections of the Bagle.A virus. 

 
Figure 1.  Using dumpbin to show the various segments of an executable. 

At this point we want to give a brief overview of how the original variant 

(A) of the Bagle virus works.  We describe the major steps that the virus takes 

during its execution.  It is a summary of what the virus does and how it does it.  A 

more detailed explanation is found in Appendix A of [2].   

 The first thing Bagle does is initialize the COM (Component Object 

Model), which is needed for any non-trivial program running on the Microsoft 

Windows platform.  COM is a platform-independent, distributed, object-oriented 

system for creating binary software components that can interact [30].   

The very next thing it does is check that the current local date is no later 

than January 28, 2004.  If it’s after January 28, 2004, the virus exits immediately 

without doing any damage; otherwise it continues.  This means that systems with 

the wrong time may still continue to be infected and help the virus spread.  If the 

system was infected prior to January 28, 2004 and it is now after January 28, 2004, 

the virus will automatically kill its own process and delete its file from the 



 9

Windows system directory.  However, it will not remove its Registry entries, but 

that is not an issue since Windows will ignore them after the virus is deleted. 

It then creates a registry entry "uid" = "[Random Value]" in the 

registry key HKEY_CURRENT_USER\Software\Windows98.  [Random 

Value] in this case is replaced by 8 random bytes.  Following this, it initializes 

the Windows sockets library in order to make use of the network, and creates a 

mutex which will be used later to synchronize threads.  It then proceeds to copy 

itself to the %system% (C:\WINDOWS\system32) directory and execute that 

copy of the virus, while killing the currently running process.  If the virus is not run 

from %system%\bbeagle.exe, it executes calc.exe, which helps it conceal 

itself from user suspicion.  After all, the virus has an icon of a calculator and so a 

user expects it to open up the Calculator program.  If it is run from 

%system%\bbeagle.exe, it will not execute calc.exe.  It also adds a new 

value, "d3dupdate.exe" = "%system%\bbeagle.exe" to the key 

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVer

sion\Run, which restarts the virus during boot time, and the value "frun" = 

"1" to the registry key HKEY_CURRENT_USER\Software\Windows98, 

which means the virus has been successfully run on the machine for the first time. 

With a new thread it creates a listening socket on port 6777, which accepts 

various commands and allows an attacker to upload files and execute them.  This 

allows the attacker to update his virus with newer versions at will.  The attacker can 

also send a specially crafted byte sequence that will force the virus to kill its own 



 10

process and delete itself from the file system.  Thus, the attacker (and anyone else) 

has the ability to remove the virus remotely. 

Another thread starts up and its purpose is to contact a list of hard coded 

websites every 10 minutes to inform them of the infection on the current machine.  

It sends the [Random Value] and port number the virus is listening on to each 

web site.  Of course, the IP of the infected machine is logged as well. 

 Another thread is created and its purpose is to search all fixed drives for 

files that contain .wab, .txt, .htm, or .html in their filenames for valid email 

addresses.  When an email address is found, the virus uses its own SMTP engine to 

send itself to the newly found email address.  The source address in the email will 

be spoofed to try to prevent suspicion.  Finally, the executing virus goes to sleep 

and runs every 1 second in the background.  The virus has the process name 

bbeagle.exe in task manager. 

 One of the results that came about from the disassembly process was the 

discovery of the functional flow of the virus, which is presented in Appendix A. 

 Additionally, we assume that the reader is familiar with different types of 

viruses/worms.  Finally, knowledge of the Win32 Portable Executable (PE) file 

format is necessary and this will be presented in Chapter 3 with the design details 

of the algorithm.  For detailed information on these topics please refer to [2, 6, 7, 

8]. 

 



 11

1.5 Organization of the Thesis 

The remainder of the thesis is organized into three chapters.  In Chapter 2, we 

present related work in the fields of executable and binary analysis (static and 

dynamic), give an overview of the FSA-based method developed by Sekar et. al. in 

[5], and also present some related works to program slicing.  In Chapter 3 we 

describe in detail our methodology for analyzing the binary executable, extracting 

and constructing the signature (FFSig), storing the signature (FFSig), and finally 

comparing different signatures for verification purposes.  In Chapter 4, we 

conclude and offer ideas for future research.  



 12

 

 

Chapter 2 

2 Related Work 

Analysis of binaries and executables can be generally classified into two 

classes: static analysis and dynamic analysis.  Similarly, intrusion detection 

techniques can be divided into the following two classes: misuse detection and 

anomaly detection.  Much of the research done in the analysis of executables falls 

into the realm of dynamic analysis and anomaly detection [5, 10, 11, 12, 13].  The 

concept of detecting attacks by analyzing sequences of system calls is not new in 

the field of host-based anomaly detection systems.  In fact, most Intrusion 

Detection Systems (IDS) and Intrusion Prevention Systems (IPS) systems today 

support this technique and monitor for abnormal sequences of system calls and flag 

that as a possible attack. 

Cohen [14] and Chess-White [15] showed that an algorithm that can detect all 

possible viruses cannot exist, while Landi [16] showed that static analysis can be 

undecidable and incomputable.  However the problem considered in this thesis is 

different.  We are not attempting to create an algorithm that will detect all possible 

viruses.  Instead we describe an algorithm that will allow us to statically extract 

specific sequences of Win32 API calls from an executable and store them in an 

efficient manner by using the ideas presented by Sekar et. al. in [5].  In addition, 

the results of Barak et. al. [17] shows that obfuscation is generally impossible to 



 13

achieve in a computationally bounded environment.  So, in theory, it is impossible 

to completely hide the malicious behavior of a virus. 

Much of the research done in regards to static analysis requires that the source 

code of the executable be available [18, 19, 20].  This is obviously not possible 

with many of the executables found on today’s computer systems and the Internet, 

especially if the executable is potentially malicious.  There is some research that 

has been conducted in statically analyzing binary executables with no access to 

source code [3, 21, 22, 27, 28].  However, there are several differences between the 

current state of research and our proposed algorithm.  In [3], the authors first 

unpack (if needed) the PE binary file and then extract the API calling sequence in a 

semi-manual manner.  In fact, they use a disassembler (W32Dasm – a commercial 

disassembler) to disassemble the PE binary file and then run that output through a 

parser to get the API calling sequence.  They store this new sequence by storing a 

sequence of 32-bit integers, which represent the various Dynamically Loaded 

Libraries (DLLs) and the particular API within that DLL.  They store this sequence 

of 32-bit numbers in a vector.  Our methodology looks at an unpacked executable 

and can automatically and efficiently extract a suspect slice and store it in a FSA 

utilizing the methods developed in [5].   

Our methodology makes use of a splicing algorithm to extract the relevant 

parts of the executable.  In [3], they appear to capture every single API call made 

by the executable, which could quickly run into the thousands, making it too big to 

store and too long to analyze.  This splicing algorithm is described in detail in 

Section 3.  Program slicing was originally introduced by Mark Weiser in [25].  He 



 14

defined program slicing as a method for abstracting and reducing a program to a 

minimal form, while still preserving its behavior.  The reduced program, or “slice,” 

is an autonomous program independent of the original, but is guaranteed to have 

the same behavior as the original within the domain of the specified subset of 

behavior.  His approach for decomposing a program consisted of analyzing its 

control and data flow (via the program’s source code).  Weiser further states that 

the behavior of interest can be specified as values of specific sets of variables at 

some set of statements and he calls this the slice criterion.  This algorithm is further 

described in the following section.  Static program slicing of binary executables is 

described by Kiss et. al. in [27] and Cifuentes et. al. in [28].  We further describe 

their methods in section 3 and show how it can be applied to our methodology with 

detailed examples. 

 Finally, our methodology also makes use of similarity measures.  Extensive 

research in this field has been done by many including Nambiar et. al. [34], 

Noreault et. al. [35], and Cohen [36].  We make use of efficient techniques that are 

able to compare finite state automata and graphs, based on the research conducted 

by D. Zhang et. al. [39] and L.P. Cordella et. al. [40].  We also present some other 

techniques that can be used to measure similarity between sequences.  They include 

Euclidean distance, cosine measures, the Jaccard measures, and the Pearson 

correlation measure. 



 15

 

 

Chapter 3 

3 Algorithm and Architecture Design 

In this section, we present our methodology for efficiently and statically 

analyzing an executable to construct (extract) and store a signature based on the 

sequence of Win32 API calls made by the executable, followed by a slew of 

similarity measures to compare known and unknown signatures.  Our approach 

consists of 4 major steps.  The first step is the disassembly of the target executable, 

which yields an assembly version of the code.  The first step also includes the 

analysis of the assembly code to simplify it and improve the analyzability of it.  

This results in abstractions and high-level representations of the assembly code.  

The second step is to extract certain malicious parts of the code in order to analyze 

it more closely.  This step reduces and focuses the amount of code that has to be 

analyzed (in effect it decreases the complexity of the detection process).  This is 

accomplished by using slicing techniques on certain areas of the assembly code.   

The third is to store the information from the slice using a finite state automaton 

(this becomes the signature).  The fourth and final step is to use various similarity 

measures to compare different signatures and then produce a report.  The overall 

architecture of our methodology is reported in Figure 2.  

 

 



 16

 

 
Figure 2. Overview of the system architecture. 

 

3.1 Disassembly and Analysis of Executable 

A binary executable is stored as a sequence of bytes.  To be able to analyze 

the control flow of the program, the sequence of bytes has to be processed.  As we 

will see, trying to detect instruction boundaries from binary code is not a trivial 

task.  On architectures with variable length instructions the boundaries may not be 

detected unambiguously.  On architectures with multiple instruction sets it may be 

difficult to determine the instruction set used.  If the binary representation mixes 

code and data their separation may be also difficult [27].  Once the instruction 

boundaries have been determined, the control flow of the program still has to be 

determined.  This is more troublesome than it seems at first.  The behavior of the 

instructions have to be established and since instructions at the binary level are so 

much more numerous (as compared to the source-code equivalent) and jumps and 

other control transfer instructions are sometimes ambiguous in where they transfer 



 17

control, it requires more than simply scanning and tokenizing the binary.  Another 

important problem that needs to be addressed is the determination of the function 

boundaries.  Function call sites have to be detected and the targets of the function 

calls need to be determined. The detection of function boundaries is not an easy 

task in general, but indirect function calls, where the target of the call cannot be 

determined unambiguously, and overlapping and cross-jumping functions (where 

the control flow can cross function boundaries) present further problems [27].  

These problems are mitigated slightly by auxiliary data stored within the executable 

image itself.  In the PE format, for example, there is a PE header which contains 

supplementary data that helps the operating system load and execute the executable 

image.  This information includes section tables, individual section data, sizes, 

offsets, relocation data, symbol information, etc.  Needless to say, this information 

is highly dependent on the specific format of the executable image and the 

operating system itself, so generalizing the extraction process of this information is 

not possible.  Below, we go through the process of dissecting a PE executable. 

Once the executable has been acquired, we can begin the analysis.  We first 

check if the executable is packed (compressed).  This is done by reading the section 

names in the section table of the PE header.  For example, if the section name is 

UPX0, UPX1, and so on, then we know that the PE file has been packed with the 

UPX algorithm.  We can then manually unpack it.  For example, Variant B of the 

Bagle virus was compressed with UPX as shown in Code 1. 

Section Table 
  01 UPX0      VirtSize: 00009000  VirtAddr:  00001000 
    raw data offs:   00000400  raw data size: 00000000 
    relocation offs: 00000000  relocations:   00000000 
    line # offs:     00000000  line #'s:      00000000 
    characteristics: E0000080 
      UNINITIALIZED_DATA  EXECUTE  READ  WRITE  ALIGN_DEFAULT(16) 



 18

 
  02 UPX1      VirtSize: 00002000  VirtAddr:  0000A000 
    raw data offs:   00000400  raw data size: 00001A00 
    relocation offs: 00000000  relocations:   00000000 
    line # offs:     00000000  line #'s:      00000000 
    characteristics: E0000040 
      INITIALIZED_DATA  EXECUTE  READ  WRITE  ALIGN_DEFAULT(16) 

Code 1.  The section table of Bagle.B virus showing UPX compression is used. 

We then unpack it manually using the UPX program [29] as shown in Figure 3. 

 
Figure 3. Unpacking an executable using UPX. 

Once the executable has been unpacked, we can begin to process the PE file.  

Every PE file begins with a small DOS stub program (a.k.a. MS-DOS header), 

whose sole purpose is to print out an error message that says that Windows is 

required to run this executable (the error message is “This program cannot 

be run in DOS mode.”)  Within this MS-DOS header, there is field called 

e_lfanew, which contains the offset of the PE header.  The MS-DOS header is 

defined in winnt.h, as shown in Code 2. 

typedef struct _IMAGE_DOS_HEADER {  // DOS .EXE header 
    WORD   e_magic;            // Magic number 
    WORD   e_cblp;             // Bytes on last page of file 
    WORD   e_cp;               // Pages in file 
    WORD   e_crlc;             // Relocations 
    WORD   e_cparhdr;          // Size of header in paragraphs 
    WORD   e_minalloc;         // Minimum extra paragraphs needed 
    WORD   e_maxalloc;         // Maximum extra paragraphs needed 
    WORD   e_ss;               // Initial (relative) SS value 
    WORD   e_sp;               // Initial SP value 
    WORD   e_csum;             // Checksum 
    WORD   e_ip;               // Initial IP value 
    WORD   e_cs;               // Initial (relative) CS value 
    WORD   e_lfarlc;           // File address of relocation table 
    WORD   e_ovno;             // Overlay number 
    WORD   e_res[4];           // Reserved words 
    WORD   e_oemid;            // OEM identifier (for e_oeminfo) 
    WORD   e_oeminfo;          // OEM information; e_oemid specific 
    WORD   e_res2[10];         // Reserved words 
    LONG   e_lfanew;           // File address of new exe header 
  } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER; 

Code 2.  The MS-DOS header defined inside winnt.h. 



 19

So we need to find this value within the MS-DOS header, as shown in Code 3. 

// MakePtr is a macro that allows you to easily add to values  
// (including pointers) together without dealing with C's pointer  
// arithmetic.  It essentially treats the last two parameters as  
// DWORDs.  The first parameter is used to typecast the result to  
// the appropriate pointer type. 
#define MakePtr(cast, ptr, addValue) (cast)((DWORD_PTR)(ptr) + 
(DWORD_PTR)(addValue)) 
 
// IMAGE_NT_SIGNATURE and IMAGE_DOS_SIGNATURE are defined in  
// winnt.h 
#define IMAGE_NT_SIGNATURE     0x00004550  // PE00 
#define IMAGE_DOS_SIGNATURE    0x5A4D      // MZ 
 
// declare a pointer to the DOS Header and fill in its data via  
// g_pMappedFileBase, which is a mapped view of the opened  
// executable. 
PIMAGE_DOS_HEADER dosHeader; 
dosHeader = (PIMAGE_DOS_HEADER)g_pMappedFileBase; 
 
// check the for the MZ signature 
if ( dosHeader->e_magic == IMAGE_DOS_SIGNATURE ) 
{ 

// Make pointers to the 32 bit version of the header. 
pNTHeader = MakePtr(PIMAGE_NT_HEADERS, dosHeader, dosHeader->e_lfanew); 

  
 // check the signature to make sure its PE00 

if (pNTHeader->Signature != IMAGE_NT_SIGNATURE) 
{ 
 printf("Not a Portable Executable (PE) EXE\n"); 
 return; 

     } 
} 

Code 3.  Checking for the MS-DOS and PE signatures. 

The important thing to remember here is that the data structures of a PE file on 

disk are the same as the data structures used in memory.  So if you know how to 

find something inside the PE file on disk, you will be able to find it when it is 

loaded in memory.  The next step is to find the Relative Virtual Address (RVA) of 

the entry point within the PE Header (pNTHeader).  This is the address at which 

the code section begins (and where the executable begins to execute).  Within a PE 

file, there are many places where memory addresses need to be specified (i.e. the 

address of a global variable).  Although PE files have a preferred loading address 

(this is known as the ImageBase and the default for Windows executables is 

0x00400000), the operating system can load them anywhere in memory.  This 

means that a PE file needs to have a way of specifying addresses within its image 



 20

independently of where the file is actually loaded.  This is achieved via RVAs.  

Instead of hard-coded values, the PE file uses RVAs, which are just offsets from 

the address where the image was loaded (known as HMODULE in Windows-speak).  

The RVA of the entry point of the image is specified within the structure called 

IMAGE_OPTIONAL_HEADER.  It is defined inside winnt.h, as shown in Code 

4. 

typedef struct _IMAGE_OPTIONAL_HEADER { 
// 
// Standard fields. 
// 

 
WORD    Magic; 
BYTE    MajorLinkerVersion; 
BYTE    MinorLinkerVersion; 
DWORD   SizeOfCode; 
DWORD   SizeOfInitializedData; 
DWORD   SizeOfUninitializedData; 
DWORD   AddressOfEntryPoint; 
DWORD   BaseOfCode; 
DWORD   BaseOfData; 

  
// 
// NT additional fields. 
// 

 
DWORD   ImageBase; 
DWORD   SectionAlignment; 
DWORD   FileAlignment; 
WORD    MajorOperatingSystemVersion; 
WORD    MinorOperatingSystemVersion; 
WORD    MajorImageVersion; 
WORD    MinorImageVersion; 
WORD    MajorSubsystemVersion; 
WORD    MinorSubsystemVersion; 
DWORD   Win32VersionValue; 
DWORD   SizeOfImage; 
DWORD   SizeOfHeaders; 
DWORD   CheckSum; 
WORD    Subsystem; 
WORD    DllCharacteristics; 
DWORD   SizeOfStackReserve; 
DWORD   SizeOfStackCommit; 
DWORD   SizeOfHeapReserve; 
DWORD   SizeOfHeapCommit; 
DWORD   LoaderFlags; 
DWORD   NumberOfRvaAndSizes; 
IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]; 

} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32; 
Code 4.  The address of the entry point into an executable is defined. 

The code to extract the RVA of the entry point can be as follows: 

printf("%X\n", &pNTHeader->OptionalHeader->AddressOfEntryPoint); 

 



 21

This memory address is the address when the image is loaded into memory by the 

Windows loader.  To find the corresponding address inside the file, when it is on 

the hard disk, we have to subtract the base address of the code section from this 

RVA and then add the raw offset of the code section.  Once again, this value can be 

gotten from the structure called IMAGE_OPTIONAL_HEADER.  This will give us 

the address of the entry point within the file when it is still on the hard disk (see 

Code 5). 

PIMAGE_SECTION_HEADER section; 
unsigned cSections; 
DWORD rawOffSet; 
 
// initialize the sections and the number of sections 
section = IMAGE_FIRST_SECTION(pNTHeader); 
cSections = pNTHeader->FileHeader.NumberOfSections; 
   
// go through the sections, finding those that are executable 
for (unsigned i=1; i <= cSections; i++, section++) 
{ 

if (section->Characteristics == (IMAGE_SCN_CNT_CODE + IMAGE_SCN_MEM_EXECUTE 
+ IMAGE_SCN_MEM_READ)) 
 { 
               // if it's execute,read, and contains code then use  
               // its raw offset 
  rawOffSet = section->PointerToRawData; 
  break; 
 } 
} 
printf("raw base of code: %X\n", rawOffSet); 
printf("raw entrypoint: %X\n", ((&pNTHeader->OptionalHeader)->AddressOfEntryPoint - 
(&pNTHeader->OptionalHeader)->BaseOfCode + rawOffSet)); 

Code 5.  Calculating the address of the entry point. 

Next we want to read in the Import Address Table (IAT).  The IAT holds an 

array function pointers which point to all API functions that are imported from 

various DLLs.  Each PE file contains an IAT and each imported API has its own 

reserved spot within the IAT.  The IATs for each imported DLL appear 

sequentially in memory.  Inside the PE file, there is only one place where an 

imported API’s address is stored and that’s in the IAT.  Let’s look at what a call to 

an imported API looks like.  There are two possibilities here.  We can call through 

a function pointer, which is a very efficient way of calling a Win32 API: 



 22

CALL DWORD PTR [0x004031E8] 

 

Or we can call an API by transferring control to a small stub.  The stub is simply a 

JMP to the address whose value is at 0x004040A4.  This address is within the 

IAT.  This is less efficient because it uses 5 more bytes of code and an extra JMP 

and thus takes longer.  For example, let’s look at some actual binary code of the 

Bagle.A virus: 

0040318C: E8 95 01 00 00     call        00403326 
00403326: FF 25 C4 40 40 00  jmp         dword ptr ds:[004040C4h] 

 

The above representation is how it would look in memory.  The memory address 

0x00403326 is gotten by adding 0x0195 to 0040318c + 5 bytes (the length of 

this code).  To find the same code within the file on disk, we would do the 

following.  Whenever we run into a CALL instruction (E8), we would look at the 

next 4 bytes and add the value of those 4 bytes to the current location inside the PE 

file (and add 5 bytes to compensate for the CALL.  For example: 

00002180: 00 33 c0 5b 5f 5e c9 c2 04 00 6a 00 e8 95 01 00 .3.[_^....j..... 
00002190: 00 e8 9f e6 ff ff 83 3d 03 50 40 00 00 75 14 68 .......=.P@..u.h 

 

Above the CALL instruction is made from raw address 218C.  218C + 5 + 

0195 gives us 2326.  Let’s look at what’s at the raw address 2326 inside the PE 

file (highlighted in red): 

00002320: ff 25 2c 41 40 00 ff 25 c4 40 40 00 ff 25 c8 40 .%,A@..%.@@..%.@ 

 

It’s the same JMP instruction.  Looking it up inside [23], we see that this 

instruction is a jump to an absolute, indirect address, exactly as expected (since it’s 

a pointer to a function).  Now the question becomes which API is at the address 



 23

0x004040C4?  To answer this question, let’s first look at what IDA Pro [24] (a 

commercial disassembler) tell us: 

beagle:0040318A                 public start 
beagle:0040318A start           proc near 
beagle:0040318A                 push    0   ; pvReserved 
beagle:0040318C                 call    CoInitialize 
 

IDA Pro has determined that the API at address 0x004040C4 is 

CoInitialize.  Looking at what the PEDUMP (described in detail in [7, 8]) 

tells us about the imported API, we can see that the Import Address Table (IAT) 

RVA starts at address 0x000040C4 (see Code 6).  At this address is a pointer to 

the beginning of the IAT and the first thunk (in this case CoInitialize).   

  ole32.dll 
  Import Lookup Table RVA:  000042C4 
  TimeDateStamp:            00000000 
  ForwarderChain:           00000000 
  DLL Name RVA:             0000469E 
  Import Address Table RVA: 000040C4 
  Ordn  Name 
    49  CoInitialize 
   107  CreateStreamOnHGlobal 

Code 6.  Output form PEDUMP.EXE showing imported functions. 

 The anchor of the imports data is the IMAGE_IMPORT_DESCRIPTOR 

structure. The DataDirectory entry for imports points to an array of these 

structures. There's one IMAGE_IMPORT_DESCRIPTOR for each imported 

executable.  Each IMAGE_IMPORT_DESCRIPTOR typically points to two 

essentially identical arrays. These arrays have been called by several names, but the 

two most common names are the Import Address Table (IAT) and the Import Name 

Table (INT). Figure 4 shows an executable importing some APIs from 

USER32.DLL. [8] 

Both arrays have elements of type IMAGE_THUNK_DATA, which is a 

pointer-sized union. Each IMAGE_THUNK_DATA element corresponds to one 



 24

imported function from the executable. The ends of both arrays are indicated by an 

IMAGE_THUNK_DATA element with a value of zero.  In the executable file, they 

contain either the ordinal of the imported API or an RVA to an 

IMAGE_IMPORT_BY_NAME structure. The IMAGE_IMPORT_BY_NAME 

structure is just a WORD, followed by a string naming the imported API. [8] 

2 
Figure 4.  Two parallel arrays of pointers. 

Now that we know where the starting point is, we have to move to that 

position and begin reading and processing (disassembling) the executable.  This is a 

simplified view of how disassemblers work.  They begin to read to the executable 

one byte at a time and determine which instruction the byte is and how many 

operands it takes (how many of the following bytes belong to the current 

instruction).  We can expand our method of statically reading and analyzing the 

binary executable to fully disassembling the entire executable.  Instead, we can use 

tools like IDA Pro [24] to disassemble to the executable quickly. 

 

                                          
2 This figure taken from [8]. 



 25

3.2 Slicing Algorithm to Extract the Signature 

Our methodology makes use of a slicing algorithm to extract the relevant parts 

of a malicious binary executable that can be used for the signature.  Cifuentes et. al. 

in [28] correctly suggest that the ability to slice binary executables could aid in the 

analysis of worms and viruses because once a critical area of code has been flagged 

(i.e. the code that searches for emails on the hard drive), it can be sliced out and 

significantly simplify the analysis.  We will begin by introducing the idea of 

program slicing as it was described by Mark Weiser in [25].  This will be followed 

by an explanation of the techniques used to slice binary executables followed by an 

application of the techniques to our research. 

Program slicing was originally introduced by Mark Weiser in [25].  He defined 

program slicing as a method for abstracting and reducing a program to a minimal 

and simple form, while still preserving its behavior.  The reduced program, or 

“slice,” is an autonomous program independent of the original, but is guaranteed to 

have the same behavior as the original within the domain of the specified subset of 

behavior.  Weiser’s approach for decomposing a program consisted of analyzing its 

control and data flow (via the program’s source code).  Weiser further states that 

the behavior of interest can be specified as values of specific sets of variables at 

some set of statements and he calls this the slice criterion.  Figure 5 (compiled from 

images in [25]) gives examples of some slicing criterion and their corresponding 

slices. 



 26

 
Figure 5.  The original program (left), and some example slices of the program. 

Weiser’s algorithm works on block-structured Pascal-like source code 

where variables are uniquely named and all procedures are assumed to be single-

entry, single-exit.  The slicing criterion for such a program can be thought of as a 

window for observing its behavior and this window is specified as a statement and 

the values of a set of variables (as shown in Figure 5).  The slicing criterion can be 

specified as a pair <i, v>, where i is the number of the statement at which to 

observe, and v is the set of variables to observe.  Weiser further states that each 

slice has the following two properties: the slice must be obtained from the original 

program via statement deletion and that the behavior of the slice must be the same 

as the original program when the slice criterion is applied.  Because statement 

deletion will often make a program ungrammatical, Weiser makes use of 

flowgraph3 to represent the program, where each node will represent a single 

                                          
3 From [25]: A flowgraph is a structure G = <N,E,n0>, where N is the set of nodes, E is a set of 
edges in NxN, and n0 is the distinguished initial node. If (n,m) is an edge in E then n is an 
immediate predecessor of m, and m is an immediate successor of n. A path of length k from n to m 
is a set of nodes p(0),p(1), . . . . p(k) such that p(0) = n, p(k) = m, and (p(i), p(i+l)) is in E for all i,0 
< i < k-l. There is a path from n0 to every other node in N. A node n is nearer than a node m to some 
node q if the shortest path from n to q has length less than the shortest path from m to q.  A node m 
is dominated by a node n if n is on every path from n0 to m.  An inverse dominator is a dominator 
on the flowgraph obtained by reversing the direction of all edges and making the final node the 
initial node. 



 27

source language statement.  Deleting nodes from a flowgraph produces a new, yet 

meaningful flowgraph as long as the nodes that were deleted have only one 

successor.  The deleted node’s successors become the successors of the 

predecessors of the deleted nodes, as shown in Figure 6 (taken from [25]). 

 
Figure 6.  A group of statements with a single successor.   Nodes C, D, and E form a set with a 

single successor, F, not in the set.  The flowgraph is shown before (left) and after (right) 
removing this set. 

 

The second property of slices is that they exhibit the equivalent behavior as the 

original program with the slicing criterion applied.  To be more precise, equivalent 

behavior is defined as behavior that is equivalent when the original program 

terminates.  The slicing criterion has the form <i, v> and v can be used in both 

the slice and the original program.  However, i, may not exist in the slice, so 

<SUCC(i)> is used instead.  <SUCC(i)> is the nearest successor to i and it 

exists in the original program as well as the slice.  To find slices using dataflow 

analysis requires one to know all the possible statements and variables that can 

affect the variables being observed through the window of the slicing criterion.  

This is known as reachability analysis.  Further information on this dataflow 

analysis algorithm can be found in [25]. 

Static program slicing of binary executables is described by Kiss et. al. in [27] 

and Cifuentes et. al. in [28].  In the next few pages we further describe their 

methods and show how it can be applied to our methodology.  We start with a 



 28

description of the research presented in [28] which is based on the Intel 80286 

CISC chipset (the techniques can be applied to the Intel Pentium chipset, but would 

take longer since it has more instructions).  Cifuentes et. al. focus on 

intraprocedural slicing, which means that they look at calls made within a single 

procedure (although they make use of some of the ideas presented in [31]).  

Cifuentes et. al. stipulate that when faced with an indexed JMP instruction or an 

indirect CALL or JMP instruction on the value of a register, statically it is not 

possible to determine the value in the register and thus it is not possible to 

determine the target address.  For example, in Figure 7 (taken from [28]), the 

indexed JMP at instruction 71 depends on the contents of the BX register.  

Statically, we do not know the value in the BX register.  However, we can use 

backward splicing on the BX register at instruction 71 to figure out the possible 

ranges of values in the BX register. 

 
Figure 7. Extract assembly code with an indexed jump statement. 

The algorithm is divided into three steps: 

1. Determine the slice using the algorithm presented by Horwitz et. al. in [31]. 
2. Add unconditional jumps and returns to the slice. 
3. Fix jump labels. 



 29

The first step is described here.  Program slicing as presented by Weiser in [25] 

uses individual statements as the nodes in the control flow graph (CFG) (See Figure 

10).  The corresponding machine code or assembly instructions are too numerous 

and thus basic blocks of them are used as the nodes in the CFG.  The construction 

of the control dependence graph (CDG) is based on the post dominator tree (PDT) 

and the CFG.  A CDG is a graph that represents control dependencies in a graph.  

For example, if statement X determines whether statement Y is executed, then 

statement Y is control dependent on statement X.  Statements that are guaranteed to 

execute are said to be dependent on program entry.  An example of a CDG is 

shown in Figure 10.  A  PDT is also sometimes called a forward dominance tree 

(FDT) and represents the forward dominance of various statements within the 

program.  For example, if all paths from statement X include statement Y, then 

statement Y forward dominates statement X.  An example of a PDT is shown in 

Figure 10.  The PDT can be constructed in O(Nα(N)) time, where N is the number 

of nodes in the CFG.  The CDG can be built in N2 time by walking the PDT [28].   

Data dependencies are represented in terms of UD-chains (Use-Definition 

chains) as is shown in Figure 8 (taken from [28]), which also shows the 

disassembly of the test C program shown in Figure 9 (taken from [28]).  Prior to 

creating the UD-chains, Cifuentes et. al. analyze the code and replace various 

instructions with different, yet equivalent instructions in order to reduce 

unnecessary dependencies.  For example, the xor si, si instruction is replaced 

with mov si, 0.   The UD-chains are then generated for each register and 

condition code used in an instruction. 



 30

 
Figure 8.  Disassembled code for main() procedure of the test program in Figure 9.  It is 

annotated with Use-Definition chains. 
 

 



 31

 
Figure 9.  Sample Test C program. 

 
Figure 10. Control Flow Graph, Program Dependence Tree, and Control Dependence Graph 

for the program in Figure 8. 
 
In order to accommodate conditional jumps (those jumps that are not dependant on 

registers (i.e. jne, jl, etc.)), UD-chains on conditional codes (denoted by cc) need 

to be used. For example, in the following code: 

cmp dx, bx  ; dF = CCF,ZF,SF) 
jg L1O      ; uF = (SF) 



 32

 

the compare instruction cmp dx,bx sets the condition codes CF (carry flag), ZF 

(zero flag) and SF (sign flag). The conditional jump instruction jg L10 uses the 

sign flag to determine whether the jump is to be taken or not. Dead-condition code 

elimination would determine that the zero and carry flag set by the compare 

instruction are dead and therefore irrelevant to the analysis; however, the sign flag 

is set by this instruction and then used in the conditional jump, hence making the 

conditional jump data dependent on the comparison instruction [28]. 

 
Figure 11. Slice of program given in Figure 8 w.r.t. Register si at Instruction 11. 

 

The second step is to add unconditional jumps and return instructions.  In 

typical program slicing, the lexical successor tree (LST) is used to determine the 

next high-level statement to go to (i.e. the lexical successor of the last instruction).  

However, in binary code, the same thing can be represented by many different 

assembly instructions.  Here it is safe to assume that the end of a procedure is not at 



 33

the end (i.e. the next physical instruction), but is interleaved within the code 

somewhere else.  Unconditional jumps and return instructions introduce this break 

in the flow of control of the program.  The time required for this step is linear to the 

number of basic blocks.  The last step is used to fix the target labels.  This is done 

by checking all of the jumps that are part of the slice.  As an example, consider 

Figure 11 (taken from [28]), which shows the slice obtained from the test program 

in Figure 8 when the slice criterion is <11, si>. 

 The next logical step in slicing binary executables would be to look at how 

a way to create an interprocedural slice.  That is, generating a slice of the entire 

program where the slice spans different procedures (i.e. crosses the boundaries of 

procedure calls).  Kiss et. al. in [27] describe a method for interprocedural static 

slicing of binary executables.  Through their algorithm, they claim they were able 

to produce slices that were 56-68% of the original program size. 

 Kiss et. al. present a list of problems that exist when trying to slice binary 

executables as opposed to slicing structured source-code, as in [25].  A binary 

executable is stored as a sequence of bytes.  To be able to analyze the control flow 

of the program, the sequence of bytes has to be processed.  As we have seen earlier, 

trying to detect instruction boundaries from binary code is not a trivial task.  On 

architectures with variable length instructions the boundaries may not be detected 

unambiguously. On architectures with multiple instruction sets it may be difficult 

to determine the instruction set used. If the binary representation mixes code and 

data their separation may be also difficult [27].  Once the instruction boundaries 

have been determined, the control flow of the program still has to be determined.  



 34

This is more troublesome than it seems at first.  The behavior of the instructions 

have to be established and since instructions at the binary level are so much more 

numerous (as compared to the source-code equivalent) and jumps and other control 

transfer instructions are sometimes ambiguous in where they transfer control, it 

requires more than simply scanning and tokenizing the binary.  Another important 

problem that needs to be addressed is the determination of the function boundaries.  

Function call sites have to be detected and the targets of the function calls need to 

be determined. The detection of function boundaries is not an easy task in general, 

but indirect function calls, where the target of the call cannot be determined 

unambiguously, and overlapping and cross-jumping functions (where the control 

flow can cross function boundaries) present further problems [27].  These problems 

are mitigated slightly by auxiliary data stored within the executable image itself.  In 

the PE format, for example, there is a PE header which contains supplementary 

data that helps the operating system load and execute the executable image.  This 

information includes section tables, individual section data, sizes, offsets, 

relocation data, symbol information, etc.  Needless to say, this information is 

highly dependent on the specific format of the executable image and the operating 

system itself, so generalizing the extraction process of this information is not 

possible. 

 Once these problems have been overcome, basic block leaders are 

generated.  Leaders can be defined as instructions following branching or call 

instructions (JMP, CALL, etc.), the targets of these instructions, the first 

instructions of a function, and instructions following set switch instructions.  



 35

Instructions between these leaders are grouped in basic blocks, and these blocks are 

grouped into functions.  These functions form the basis of the CFG.  The CFG is 

further broken down into basic blocks, individual instructions, and an exit node 

which represents the exit point of the function.  The nodes of the CFG are 

connected by edges, which could be of two types: control edges and call edges.  

Control edges connect the basic blocks and represent the possible control flow of 

the program.  Call edges connect the calling site to the called function.  For an 

example CFG, see Figure 12 (taken from [27]). 

 
Figure 12. Control flow graph of the program (left) and the assembly program code (right). 

 The interprocedural slicing algorithm presented by Kiss et. al. in [27] is 

divided into several steps: 

1. Build the interprocedural CFG. 



 36

2. Perform a control and data dependence analysis on the CFG, which results 
in a program dependence graph (PDG). 

3. Compute the intraprocedural and interprocedural slices. 

Since the first step has just been explained in detail, we proceed to the second 

step, whose goal is to build the PDG.  The PDG is composed of the CDG, which in 

this case represents the different control dependencies between the basic blocks of a 

function.  The CDG is further explained above.  Kiss et. al. construct the CDG with 

the PDT and the CFG using the algorithms described in [32] and [33].   

The other part of the PDG is the data dependence graph (DDG), which 

represents the dependence among instructions according to their formal and actual 

parameters.  See Figure 13.  In order to create the DDG, every instruction is 

analyzed to see which registers, flags, and memory addresses4 it uses.  The analysis 

results in the sets uj and dj for each instruction j, which contain all used and defined 

arguments of j, respectively.  During the analysis we also determine the sets uj
(a) for 

every a ∈  dj, which contain the arguments of j actually used to compute the value 

of a. Obviously uj = U a∈dj uj
(a) for each instruction j, but instructions may exist 

where uj
(a) ⊂  uj for a defined argument a.  Unlike that in high-level programs, in 

binaries the parameter list of procedures is not defined explicitly but has to be 

determined via a suitable interprocedural analysis.  We use a fix-point iteration to 

collect the sets of input and output parameters of each function.  We compute the 

sets Uf and Df representing the used and defined arguments of all instructions in 

function f itself and in functions called (transitively) from f.  If is the set of 

instructions in f and Cf is the set of functions called from f.  The resulting set Df is 

                                          
4 The algorithm only determines if the instruction reads from or writes to memory. 



 37

called the set of output parameters of function f, while Uf ∪Df yields the set of 

input parameters of f [27]. 

5 
Figure 13. A graph-based model. 

 Finally, the CDG is extended to create the DDG.  Nodes that represent the 

instructions of the program, the used and defined arguments of each instruction, the 

parameters of the called function, and the formal input (formal-in) and output 

(formal-out) parameters are added to the graph. 

Once the individual PDGs for each individual function have been 

constructed, intraprocedural and interprocedural slices can be computed.  Here we 

concentrate on computing interprocedural slices.  The individual PDGs have to be 

interconnected and this is achieved by connecting all actual-in and actual-out 

parameter nodes with the appropriate formal-in and formal-out nodes using 

parameter-in and parameter-out edges.  Actual-in and actual-out parameters are 

nodes created for all input and output parameters of the called function, 

respectively (in effect, each function call in a PDG is connected with the 

corresponding PDG of the called function).  The resulting graph is now called a 

system dependence graph (SDG).  The SDG is further augmented with summary 

                                          
5 Image taken from slides by Judith A. Stafford (University of Colorado at Boulder). 



 38

edges to represent dependencies between actual-in and actual-out parameters.  For 

more details, refer to [27]. 

 At this point, let’s take a look at actual Bagle virus assembly code.  This 

assembly code was derived from version A of the Bagle virus by using the 

commercial disassembler IDA Pro.  Here we will look at the part of the code that is 

responsible for searching all hard drives for email addresses.  According to the 

system architecture, we slice the target executable based on suspicious APIs.  It is 

assumed that this database of suspicious APIs has been previously compiled and 

has been kept up to date.  Examples of suspicious APIs that we will use in the 

following pages include InternetOpenUrlA, FindFirstFileA, and 

FindNextFileA. 

 The first suspicious API we will look at is InternetOpenUrlA.  This 

API function is imported wininet.dll and is used to open a resource specified 

by the URL (typically an HTTP URL).  Code 7 contains the assembly code for the 

subroutine from where InternetOpenUrlA is called and the slice with respect 

to variable hMem at location 00402D97 (in gray). 

beagle:00402D3D  
beagle:00402D3D ; ¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ 
beagle:00402D3D  
beagle:00402D3D ; Attributes: bp-based frame 
beagle:00402D3D  
beagle:00402D3D sub_402D3D      proc near          ; CODE XREF: sub_402DC2+1F�p 
beagle:00402D3D  
beagle:00402D3D hMem            = dword ptr -8 
beagle:00402D3D var_4           = dword ptr -4 
beagle:00402D3D arg_0           = dword ptr  8 
beagle:00402D3D  
beagle:00402D3D      push    ebp 
beagle:00402D3E      mov     ebp, esp 
beagle:00402D40      add     esp, 0FFFFFF94h 
beagle:00402D43      push    ebx 
beagle:00402D44      push    esi 
beagle:00402D45      push    400h            ; dwBytes 
beagle:00402D4A      push    40h             ; uFlags 
beagle:00402D4C      call    GlobalAlloc 
beagle:00402D51      mov     [ebp+hMem], eax  ; result of GlobalAlloc moved into  
                                              ; hMem 



 39

beagle:00402D54      push    offset Data  ; registry_value of uid (38174321) 
beagle:00402D59      push    dword_405003  ; port_number = 1A79h = 6,777  
                                              ; (hardcoded elsewhere in the body) 
beagle:00402D5F      push    [ebp+arg_0]  ; argument passed insite =  
                                              ; http://www.elrasshop.de/1.php 
beagle:00402D62      push    offset aS?pLuIdS ; "%s?p=%lu&id=%s" 
beagle:00402D67      push    [ebp+hMem]       ; buffer just allocated with  
                                              ; GlobalAlloc() 
beagle:00402D6A      call    wsprintfA 
beagle:00402D6F      add     esp, 14h 
beagle:00402D72      call    sub_402D22 
beagle:00402D77      push    0 
beagle:00402D79      push    0 
beagle:00402D7B      push    0 
beagle:00402D7D      push    1 
beagle:00402D7F      push    offset aBeagle_beagle ; "beagle_beagle" 
beagle:00402D84      call    InternetOpenA 
beagle:00402D89      mov     [ebp+var_4], eax 
beagle:00402D8C      push    0  ; context 
beagle:00402D8E      push    40000000h ; flag = INTERNET_FLAG_RAW_DATA 
beagle:00402D93      push    0  ; header_length 
beagle:00402D95      push    0  ; header 
beagle:00402D97      push    [ebp+hMem] ; http://www.elrasshop.de/1.php?p=6... 
beagle:00402D9A      push    eax  ; handle from InternetOpen 
beagle:00402D9B      call    InternetOpenUrlA 
beagle:00402DA0      xchg    eax, ebx 
beagle:00402DA1      or      ebx, ebx 
beagle:00402DA3      jz      short loc_402DAB 
beagle:00402DA5      push    ebx 
beagle:00402DA6      call    InternetCloseHandle 
beagle:00402DAB  
beagle:00402DAB loc_402DAB:       ; CODE XREF: sub_402D3D+66�j 
beagle:00402DAB      push    [ebp+var_4] 
beagle:00402DAE      call    InternetCloseHandle 
beagle:00402DB3      push    [ebp+hMem]      ; hMem 
beagle:00402DB6      call    GlobalFree 
beagle:00402DBB      xchg    eax, ebx 
beagle:00402DBC      pop     esi 
beagle:00402DBD      pop     ebx 
beagle:00402DBE      leave 
beagle:00402DBF      retn    4 
beagle:00402DBF sub_402D3D      endp 
beagle:00402DBF 

Code 7. The subroutine in Bagle.A which makes contact with attacker websites.  The gray 
portions of the code are the resulting intraprocedural slice w.r.t. hMem at location 00402D97. 
 

The assembly code shown in Code 7 is explained here.  The Bagle virus has 

a hard-coded list of websites within its body that it tries to contact every 10 minutes 

once an infection has occurred.  In this case, the subroutine sub_402D3D was 

called by sub_402DC2.  sub_402DC2 calls sub_402D3D(website) for 

each website in that hard-coded list. sub_402D3D builds the URL string that will 

be used by our suspicious API via wsprintf and then checks for an Internet 

connection every 2 seconds via a call to InternetGetConnectedState.  

Once an Internet connection has been detected, sub_402D3D calls 

http://www.elrasshop.de/1.php
http://www.elrasshop.de/1.php?p=6


 40

InternetOpen(“beagle_beagle”,1,0,0,0), which initializes an 

application's use of the WinINet functions.  It tells the Internet DLL to initialize 

internal data structures and prepare for future calls from the application.6  It is 

imported from wininet.dll.  The string “beagle_beagle” becomes the user 

agent in the HTTP protocol.  The second parameter, 1, represents the type of 

access.  In this case it means the virus will connect to the sites by trying to resolve 

all the hostnames locally.  It is defined in include\wininet.h: 

#define INTERNET_OPEN_TYPE_DIRECT 1 // direct to net 

 

The third parameter is the ProxyName, but is NULL in this case because there was 

a direct connection to the Internet.  The fourth parameter is the ProxyBypass 

addresses that will be not be routed through the proxy.  The fifth parameter is the 

Flags parameter. 

 Two other suspicious API functions include FindFirstFileA and 

FindNextFileA since normally most executables do not make use of these API 

function calls.  FindFirstFileA(lpString1, lpFindFileData) 

searches for lpString1 (i.e. “C:\*.*”), stores information about the file or 

directory (such as file name, and creation, access, and write times) in 

lpFindFileData, and returns a handle (hFindFile) to the file or directory.  

If the handle is invalid, meaning no files were found, the function frees up the 

allocated memory and exits.  However, in the much more likely case that a file is 

found, a valid handle is returned.  FindNextFileA is similar except that it 

continues a file search from where FindFirstFileA left off.  Both are 
                                          
6 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/internetopen.asp  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/internetopen.asp


 41

imported from kernel32.dll.  But in this case, let’s do something different.  It 

is well known that most viruses and worms spread by sending themselves to other 

email addresses.  It is logical to assume that they will have some ability to either 

search for email addresses or create random ones.  In our case, the Bagle virus 

searches all hard drives for email addresses.  Searching for the “@” symbol (0x40) 

and the instructions used to compare values (i.e. cmp, xor, etc), we come upon the 

following two lines of assembly code: 

beagle:004029CC                 cmp     al, 40h 
beagle:00402A05                 cmp     al, 40h 

 
If we do a backward slice on the al register at either one of those locations (they 

come from the same subroutine), it becomes clear that we can get a narrowed API 

call sequence (or FFSig) that will in someway be related to this critical instruction.  

This FFSig will only contain those instructions and API call sequences that are 

related to the register at the specified location.  For example, if we do a backward 

slice on the value of the al register at address 00402A05, a typical preliminary 

signature will include at least (it will include more, but for the sake of space, we 

list only some of the API functions) the API functions listed in Figure 14.  Prior to 

each API function name is the DLL that exports it into the API.  Following each 

API function name is a real number, which signifies the DLL the API function 

came from and the location within that DLL that the API function exists at 

(ordinal).  See Section 3.4 for more details. 

<Exporting DLL>:<API name>:<DLL>.<Ordinal> 
 
kernel32.dll:GlobalAlloc:1.491 
kernel32.dll:GetLogicalDriveStringsA:1.366 
kernel32.dll:GetDriveTypeA:1.332 
kernel32.dll:GlobalAlloc:1.491 
kernel32.dll:lstrcpyA:1.942 



 42

kernel32.dll:LocalAlloc:1.584 
kernel32.dll:LocalAlloc:1.584 
kernel32.dll:lstrlenA:1.948 
kernel32.dll:lstrcatA:1.933 
kernel32.dll:FindFirstFileA:1.209 
kernel32.dll:lstrcatA:1.933 
shlwapi.dll:StrStrIA:3.816 
kernel32.dll:CreateFileA:1.80 
kernel32.dll:GetFileSize:1.348 
kernel32.dll:CreateFileMappingA:1.81 
kernel32.dll:MapViewOfFile:1.600 
.... 
.... 
kernel32.dll:FindNextFileA:1.218 
kernel32.dll:FindClose:1.205 

Figure 14.  One possible partial preliminary signature extracted from a slice of the Bagle 
virus.  It contains API functions that are in the suspicious API database, as well as non-

suspicious API functions that are not in that database. 
 

 Once this preliminary signature has been extracted, we augment it to create 

the final FFSig.  The augmentation involves adding program state information and 

loop and branch information (via the CFG) and deleting non-suspicious API 

function calls from the preliminary signature.  Loops and branches are detected by 

using the CFG created earlier in the process (and listed in numerical form in 

Appendix A).  A loop in a CFG will be shown via a cycle (i.e. a back edge to a 

dominator or as in Appendix A, an arrow back up).  The fact that there is a loop at 

this point in the code is noted within the signature by adding another parameter, the 

loop number(s) – multiple loop entries are comma separated – to which the API 

function belongs to.  A CFG also represents all alternatives of control flow (i.e. 

branches caused by statements like jmp, jz, jnz, jl, etc.).  This allows us to 

create different FFSigs by following different paths within the CFG.  By looking 

into the suspicious API database, which not only includes individual suspicious 

APIs, but also suspicious sequences of APIs, we construct a signature that is devoid 

of any non-suspicious APIs by deleting them from the preliminary signature.  This 



 43

database is originally built and maintained by people, so there is more flexibility 

allowed here.  We also add program state information in order to facilitate the 

construction of a finite state automaton, which will be used later in the process to 

store the signature (see Section 3.3).  The program state information is the address 

from where the call to the API function is made.  The final FFSig is shown in 

Figure 15. 

<Address of Call Site>:<Instruction Number>:<Exporting DLL>:<API 
name>:<DLL>.<Ordinal>:<loop number> 
00402CED:1:kernel32.dll:GetLogicalDriveStringsA:1.366: 
00402CFB:2:kernel32.dll:GetDriveTypeA:1.332: 
00402C0D:3:kernel32.dll:FindFirstFileA:1.209: 
00402BA6:4:shlwapi.dll:StrStrIA:3.816:1 
00402A73:5:kernel32.dll:CreateFileA:1.80:1 
00402A83:6:kernel32.dll:GetFileSize:1.348:1 
00402A9B:7:kernel32.dll:CreateFileMappingA:1.81:1 
00402AAF:8:kernel32.dll:MapViewOfFile:1.600:1 
00402C77:9:kernel32.dll:FindNextFileA:1.218:1 
00402C83:10:kernel32.dll:FindClose:1.205: 
Figure 15.  One possible final FFSig for the Bagle virus is constructed by augmenting the 

signature in Figure 14.  The augmentation involves deleting non-suspicious API functions and 
adding program state (the address of the call site) and loop information. 

 

The final FFSig shown in Figure 15 is present in all four versions of the 

Bagle virus we analyzed (See Appendix A, specifically 6).  The only thing that may 

change within different versions of the Bagle virus is the first parameter, 

<Address of Call Site>, but in that case, we use the second parameter, 

<Instruction Number>.  It is safe to assume that it is present in the rest of 

the 20+ versions.  Once an FFSig has been extracted, we have to store it and 

subsequently compare it to either known signatures or new signatures. 

 



 44

3.3 An Automaton-Based Method for Storing the 

Signature 

At this point we have extracted a slice and a signature.  Now we need a 

compact way of storing it in a fully automatic and efficient manner.  We utilize the 

finite-state automaton (FSA) based method presented by Sekar et. al. in [5] to do 

this.  The space requirements for the FSA are low – of the order of a few kilobytes 

for typical programs [5].  These requirements will be even lower for the slice that 

was produced in the previous section, since a slice is a reduced version of the 

original program (usually up to 56-68%).  Additionally, an FSA can capture an 

unbounded number of sequences of arbitrary length within a finite storage area, as 

well as structures like loops and branches. 

The central difficulty in learning an FSA from strings is that the strings do 

not provide any direct information about internal states of the automaton [5].  For 

example, if we saw an API function call (i.e. CreateFileA) multiple times 

within the slice, we would not know whether to treat the multiple occurrences as 

being from the same automaton state or from different states if we did not have any 

other information.  Sekar et. al. [5] solve this problem by utilizing the operating 

system (in their case it was Linux) to extract extra information, particularly the 

value of the program counter (PC), at the place where the system call occurs.  This 

is shown in Table 3. 

Sequence of system calls: 24210 SSSSS  
Sequence of system calls 

(with auxiliary data – PC): 76431
24210 SSSSS  

Table 3. Sequence of system calls with and without program state information. 



 45

The algorithm described in [5] is based on tracing system calls during normal 

program execution and capturing the system state (the Program Counter) at the 

point of the system call.  The key difference between this algorithm and our needs 

is that we never execute the potentially malicious program (or slice), so we have to 

adapt the algorithm to work statically.  Sekar et. al. in [5] states that the technique 

they use to construct the FSA is similar to those used in compilers to capture 

control-flow graphs.  This makes it possible to learn the FSA statically, without any 

runtime training.  This is the reason why we augmented the preliminary signature 

with <Address of Call Site> and <Instruction Number>, instead of 

relying on the Program Counter, which we won’t have access to.  In Figure 14, we 

see multiple instances of the same API function calls, without any program states 

so we can’t tell if the instances refer to the same API function call or to different 

ones.  However, in Figure 15, the final FFSig has the necessary information 

(<address of site call>, <instruction number>, <loop 

number>) to allow us to differentiate between different calls to the same API 

function.  This enables us to create an FSA from the FFSig in Figure 15, as shown 

in Figure 16.  If there were branches within this part of the code, they would be 

present inside the FSA because there would be multiple FFSigs following the 

different possible branches, as would be shown in the CFG. 



 46

 
Figure 16.  Derived FSA from the FFSig in Figure 15. 

The FSA version of the FFSig has several advantages over an N-gram (i.e. 

string) version of the FFSig, including faster learning, better detection of certain 

classes of attacks, reduction in false positives, compact representation, and fast 

detection.  For more information on each of these advantages, see [5]. 

As a side note, even if this process is not used to store the signature, they can 

be stored in more traditional ways such as arrays, vectors, or N-grams.  These 

alternative methods can be used because of the following two reasons.  The 

signatures can afford to be larger because of the evermore powerful machines used 

by users and the high-speed Internet connections available at most homes.  Those 

two factors will compensate for the potentially longer processing time it would 

require to download, install, and compare longer signatures. 

 
1 

 
2 

 
3 

1.366 1.332

1.209
 
 

4 
 

6 
 

5 
3.816
 

1.80

 
9 

 
7 

 
8 

1.600
 

1.81 
 

1.348 

1.218 

   
10 

1.205
 



 47

 

3.4 Similarity Measures for the Signatures 

Once we have disassembled and analyzed the executable, extracted the 

signature, and stored the signature using the adapted automaton-based method 

presented by Sekar et. al. in [5], we are ready to utilize the signature in the 

detection phase and produce a report on the executable. 

One way to compare two FSAs is to use a third FSA, similar to the way it is 

done in [5].  Sekar et. al. does real-time monitoring while the program is executing, 

as follows: 

1. Obtain the corresponding location from where the call was made. 
2. Check if there exists a transition from the current state to the new state 

that is labeled with the system call name that was intercepted. 
3. Update the state of the automaton to correspond to the new state. 

These steps can be modified to work on static signatures.  Let’s assume that the 

known virus signature is SA and the new signature is SB.  The comparison would 

work as follows: 

1. Obtain the corresponding location from where the call was made in SB.  
The location is stored in the <Address of Call Site> and/or 
<Instruction Number> parameters. 

2. Check if there exists a transition inside SA from the current state (found in 
step 1) to the next state (the next instruction address/number) that is 
labeled with the API function id that was intercepted inside SB.  If it does 
not exist inside SA, then we can transition to a sink state and compare SB 
to the next known signature.  If it exists, go to step 3. 

3. Move to the next state within the automaton of SB.  If the next state is not 
in the automaton of SA then move to a sink state and repeat this process 
with the next known signature. 

 

There are other ways of comparing two FSAs.  If we decide to view the FSA 

as an Attributed Relational Graph (ARG) then we can use the techniques presented 



 48

by D. Zhang et. al. [39] and L.P. Cordella et. al. [40] to compare them.  An FSA is 

really just a directed, labeled graph.  An Attributed Relational Graph (ARG)7 

generalizes the ordinary graph by attaching attributes to its vertexes and edges.  

This problem is also closely related to graph and subgraph8 matching, which is the 

problem of finding correspondences between graphs.  Part of graph and subgraph 

matching requires being able to compare two matched vertices of the two graphs 

with a distance function (see below), which will measure how similar the two 

vertices are.  There are even more techniques and implementations (i.e. toolkits) 

available in the public domain including GraphGrep [41], which allows you to 

query for a graph (i.e. an FSA) in database of graphs.  Given a collection of graphs 

and a pattern graph, GraphGrep finds all the occurrences of the pattern in each 

graph. The pattern is a subgraph and it can be also a tree, a path, or a node. 

The pattern is expressed as a list of nodes and a list of edges [41]. 

If we decide not to use the FSA created in Section 3.3 as the basis for the 

comparison, we can instead use a vector version of the FFSig (i.e. a list of 

elements, like a string) with the following techniques.  There are many techniques 

that can be used to measure similarity among two data sequences (i.e. two FFSigs).  

Extensive research in this field has been done by many including Nambiar et. al. 

[34], Noreault et. al. [35], and Cohen [36].  There are many types of techniques that 

                                          
7 D. Zhang et. al. [39] defines an ARG is defined as the following:  An attributed relational graph is 
a triple G = (V, E, A), where V is the vertex set, E is the edge set, and A is the attribute set that 
contains unary attribute ai attaching to each node ni∈V, and binary attribute aij attaching to each 
edge ek = (ni, nj)∈E. 
 
8 mathworld.com defines a subgraph as follows: A graph whose graph vertices and graph edges 
form subsets of the graph vertices and graph edges of a given graph G. If is a subgraph of G, 
then G is said to be a supergraph of . 



 49

can be used to measure similarity between sequences.  They include the traditional 

similarity measures such as cosine measures, Euclidean distance, Pearson Product 

Moment Correlation (called Pearson’s Correlation for short) measure, overlap 

coefficient, and the Jaccard measures.  In fact, multiple measures can be used when 

comparing signatures to get a more precise result.   

One of the most common measures of similarity is the Euclidean distance 

formula.  In general, the distance between two points x and y in Euclidean space 

(sometimes called n-space or the space of all n-tuples of real numbers), is given 

Figure 17. 

 
Figure 17.  The Euclidean Distance Measure. 

Using this formula, one can easily and quickly find the similarities between two 

vectors (i.e. a set of zero or more points).  For example, say the following API 

function call sequence GetLogicalDriveStringsA, GetDriveTypeA, 

FindFirstFileA, StrStrIA, CreateFileA, GetFileSize, 

CreateFileMappingA, MapViewOfFile, FindNextFileA, and 

FindClose could be mapped into the following vector (1.366, 1.332, 

1.209, 3.816, 1.80, 1.348, 1.81, 1.600, 1.218, 1.205).  

The integral part of the number (to the left of the decimal point) corresponds to the 

DLL from which the API function is imported from, which in this case 1 stands for 

kernel32.dll and 3 for shlwapi.dll.  The fractional part (to the right of 

the decimal point) simply represents the location at which the API function exists 

within the DLL.  Alternatively, each suspicious API function can be mapped into a 



 50

more appropriate id (i.e. 32-bit numbers).  Once another signature is constructed, it 

can be compared to this one using the Euclidean formula, as is shown in Table 4. 

Known virus signature (SA): (1.366, 1.332, 1.209, 3.816, 1.80, 1.348, 
1.81, 1.600, 1.218, 1.205) 
 

New signature (SB): (1.366, 1.332, 1.209, 3.816, 1.80, 1.348, 
1.81, 1.600, 1.218, 1.205) 
 

Euclidean Distance (SA,SB): 0 
Table 4.  Euclidean distance measure between FFSigs from Bagle.A and Bagle.B. 

 The Euclidean distance measure has several flaws.  First, the decision on 

whether two signatures matched does not depend on the length of the signature.  

This is bad because two signatures could be identical, except for one part, which 

could result in a large Euclidean distance measure (see the section on Pearson’s 

Correlation measure).  Identical signatures would have a Euclidean distance of 0.  

Ideally, the longer the vector, the less each variation should effect the final 

similarity measure.  The second flaw has to do with sequence alignment.  A new 

call sequence that is identical to a known signature, but is not properly aligned with 

the known signature will likely not have a low Euclidean distance measurement.  

For example, in Table 5, the Euclidean distance is not as low as it ideally would be 

if the two signatures were properly aligned. 

Known virus signature (SA): (1.491, 1.366, 1.332, 1.209, 3.816, 1.80, 
1.348, 1.81, 1.600, 1.218) 
 

New signature (SB): (1.366, 1.332, 1.209, 3.816, 1.80, 1.348, 
1.81, 1.600, 1.218, 1.205) 
 

Aligned known virus signature 
(SA’):

(1.491, 1.366, 1.332, 1.209, 3.816, 1.80, 
1.348, 1.81, 1.600, 1.218, -----) 
 

Aligned new signature (SB’): (-----, 1.366, 1.332, 1.209, 3.816, 1.80, 
1.348, 1.81, 1.600, 1.218, 1.205) 
 

Euclidean Distance (SA, SB): 
(before alignment)

3.361 

Euclidean Distance (SA’, SB’): 1.917 



 51

(after alignment)
Table 5.  The effect of misalignment in the Euclidean distance measure. 

This global and formal9 misalignment problem can be solved by applying 

the techniques described by Wilson in [37].  This technique is similar to the 

Needleman-Wunsch Algorithm used in comparing sequences of DNA samples (See 

Figure 18).  In addition, this is also similar to the problem of finding the Longest 

Common Sequence (LCS) as is described by Cormen et. al. in [38].  Additionally, 

it has the same cost of O(nm), where n and m are the lengths of the two strings.  

The technique can be conceptualized as loading the two signatures inside a matrix, 

with one signature placed on the horizontal axis and the second signature placed on 

the vertical axis, and then computing the score of the best path to each cell, as is 

shown in Figure 19.  Any matches are marked off with an (X).  Beginning with the 

uppermost left cell, the score of the best path to that cell is calculated by adding the 

highest score to the top and left of the cell with a 1 if a match occurs and a 0 if 

match does not occur.  Once the scores have been calculated, the highest score is 

where the best alignment occurs.  The correct alignment is constructed by working 

backwards from the maximum match and adding gaps or performing deletions.  

When finished, the best alignment has been achieved.  See Table 5.  It is important 

to note that even when the best alignment has been achieved, it is possible that the 

Euclidean distance will be larger than when the vectors were not aligned. 

                                          
9 Formal alignment is a precise quantitative scoring system for matches and gaps. 



 52

10 
Figure 18.  The Needleman-Wunsch Algorithm used in aligning DNA sequences. 

 

 

 1.1 1.2 1.3 1.4 1.5 1.6   1.1 1.2 1.3 1.4 1.5 1.6 
2.1        2.1 0 0 0 0 0 0 
1.1 (X)       1.1 1 0 0 0 0 0 
1.2  (X)      1.2 0 2 1 1 1 1 
1.3   (X)     1.3 0 1 3 2 2 2 
1.4    (X)    1.4 0 1 2 4 3 3 
1.5     (X)   1.5 0 1 2 3 5 4 
Figure 19.  The sequence alignment algorithm in action on the sequences from Table 5.  Match 

= +1, Mismatch = 0. 
 

 We can use the other classical similarity measures including cosine 

measure, Pearson’s Correlation, and the Jaccard coefficient, for greater accuracy 

when comparing two signatures.  Each of the similarity measures has advantages 

and disadvantages.  The cosine measure is given in Figure 20 and it measures the 

cosine of the angle between the two vectors.  The cosine measure does not depend 

on the length of the vectors (i.e. signatures), meaning that signatures of different 

                                          
10 This image taken from slides at http://www.maths.tcd.ie/~lily/pres2/sld007.htm 

http://www.maths.tcd.ie/~lily/pres2/sld007.htm


 53

lengths, but similar composition will be treated as similar as opposed to radically 

different. 

Cosine Measure = 
21

21

SS
SS
•

 

Figure 20.  Cosine similarity measure. 

 The Jaccard coefficient measures the proportion of overlap (the shared 

elements) between two vectors to the total number of elements shared between the 

two vectors.  The formula for the Jaccard coefficient is shown in Figure 21. 

Jaccard Coefficient = 
2121

21

SSSS
SS
−+

 

Figure 21.  Jaccard Coefficient. 

 Pearson’s Correlation measure is another popular similarity measure.  It 

measures the degree to which two variables (or vectors) are related.  It reflects the 

strength of linear relationship (i.e. how close the point are to forming a straight 

line) between the two variables.  It ranges from +1 to -1, with +1 meaning a perfect 

positive linear relationship, and -1 means the opposite.  Figure 22 has examples of 

various Pearson’s Correlations and linear relationships.  The formula for Pearson’s 

Correlation is given in Figure 23.  Pearson’s Correlation measure has the advantage 

of minimizing the effects of a single wildly different element if the rest of the 

elements are similar. 



 54

11 
Figure 22. Examples of Pearson's Correlations.  (a) has a perfect positive linear relationship 

(+1).  (b) has a perfect negative linear relationship (-1).  (c) has a strong, but not perfect 
positive linear relationship.  (d) has no linear relationship (0). 

 

Pearson’s Correlation = r = 
( ) ( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

∑ ∑∑ ∑

∑ ∑∑

N
S

S
N
S

S

N
SS

SS

2
22

2

2
12

1

21
21

 

Figure 23.  Pearson's Correlation. 

 

                                          
11 Image composed from images found at http://davidmlane.com/hyperstat/index.html 

http://davidmlane.com/hyperstat/index.html


 55

 

 

4 Chapter 4 

4.1 Conclusion 

Current virus signatures used by AV scanners are alarmingly weak as 

demonstrated by [2, 3, and 21].  A need for stronger signatures based on different 

information exists.  One solution to this problem is to use Functional Flow 

Signature (FFSig), which is a virus signature that would encompass a specific 

sequence of API calls, instead of the small bit of binary code currently used for 

signatures which could be easily modified. 

 In this thesis, we present and describe a methodology for efficiently and 

statically analyzing a potentially malicious Windows executable, extracting specific 

sequences of Win32 API calls made by the executable, storing them efficiently by 

utilizing the method presented in [5], and then using several similarity measures to 

compare known and unknown signatures.  This forms the basis for FFSig.  Our 

algorithm does not require any modification to the host operating system and does 

not require the executable to be run as it would if it was dynamically analyzed.  In 

addition, by only doing static analysis, this allows us to scan a large number of 

executables in a short period of time.   

The first step of this process is the disassembly of the target executable, 

which yields an assembly version of the code.  The first step also includes the 

analysis of the assembly code to simplify it and improve the analyzability of it.  



 56

This results in abstractions and high-level representations of the assembly code.  

The second step is to extract certain malicious parts of the code in order to analyze 

it more closely.  This step reduces and focuses the amount of code that has to be 

analyzed (in effect it decreases the complexity of the detection process).  This is 

accomplished by using slicing techniques on certain areas of the assembly code.   

The third is to store the information from the slice using a finite state automaton 

(this becomes the signature).  The fourth and final step is to use various graph 

matching techniques and similarity measures to compare different signatures and 

then produce a report.  

 

4.2 Future Work 

There are several interesting problems for future research in the area of static 

analysis of executables for detecting malicious behaviors.  They include the 

following research areas.  Can frequency information (i.e. how many times does a 

loop run, how many times a certain API function was called, etc.) be incorporated 

into the data contained by the FFSig in order to provide a better profile of the 

executable?  This may allow us to get a more accurate results and stronger 

signatures.  Another possibility involves the use of API function call argument 

values (i.e. by doing backward slicing on them).  This again may strengthen the 

signature (i.e. the signature can contain information on which files are accessed) 

and reduce the number of false positives. 

Another set of possible research topics include the following questions.  Can 

slicing be used on the virus to “sterilize” it so that it is no longer malicious or 



 57

dangerous to the system?  Can slicing be used to extract only the malicious parts of 

the virus in order to analyze and study that part much more effectively?  Can virus 

signatures encompass any other information that would make them stronger against 

changes?  What is the proper threshold for the ratio of similarities between different 

signatures?  Can this process be adapted to deal with encrypted or polymorphic 

viruses?  Can this entire process be automated in an efficient way so human 

intervention is minimized or not needed at all? 

 



 58

 

 

5 Appendixes 

5.1 Appendix A: Functional Flows 

The following is the functional flow of variant A of the Bagle virus. This 

was created by manual inspection of the virus through the use of IDA Pro.   For 

more details on all the Win32 API calls that are called below, see Appendix A.  

The sub_ functions are also described in detail in Appendix A of [2]. 

 
1. CoInitialize – initialize the COM library. 
2. sub_401835 – this function does many things; see below for details. 

2.1. sub_401669 – check that the current date is earlier than January 28, 2004, otherwise 
exit. 

2.1.1. GetLocalTime 
2.1.2. sub_401000 – zeroes out number of bytes from starting address. 
2.1.3. SystemTimeToFileTime 
2.1.4. SystemTimeToFileTime 
2.1.5. CompareFileTime 

2.2. GetTickCount 
2.3. sub_40126F – fills memory with random data using the result from GetTickCount as 

the random seed. 
2.4. sub_4015A5 – check/create a registry entry. (uid) 

2.4.1. RegCreateKey 
2.4.2. RegQueryValueEx 
2.4.3. sub_4012AA – returns a random value less than passed argument. 
2.4.4. RegSetValueEx 
2.4.5. RegCloseKey 

2.5. WSAStartup – initialize the use of Windows Sockets. 
2.6. sub_402ADD – allocate heap memory. 

2.6.1. sub_401524 – wrapper function. 
2.6.1.1. GlobalAlloc 

2.7. CreateMutex 
2.8. sub_402737 – creates a mutex and allocates heap memory. 

2.8.1. CreateMutex 
2.8.2. GlobalAlloc 

2.9. sub_4016CA – make a base64-encoded copy of the virus for use with email. 
2.9.1. GlobalAlloc 
2.9.2. GetModuleFileName 
2.9.3. CreateFile 
2.9.4. GetFileSize 



 59

2.9.5. CreateFileMapping 
2.9.6. MapViewOfFile 
2.9.7. GlobalAlloc 
2.9.8. sub_4010DD – wrapper function. 
2.9.9. lstrlen 
2.9.10. UnmapViewOfFile 
2.9.11. CloseHandle 
2.9.12. GlobalFree 

2.10. GetSystemDirectory 
2.11. GetModuleFileName 
2.12. lstrcat 
2.13. sub_401625 – check/create a registry entry. (d3dupdate.exe) 
2.14. StrStrI 
2.15. GetCommandLine 
2.16. WinExec – if the virus is not run from %system%\bbeagle.exe, execute calc.exe. 
2.17. CopyFile 
2.18. WinExec – run the virus from the system directory. (to continue executing following 

functions) 
2.19. sub_4017DC – check/create a registry entry. (frun) 
2.20. sub_40179B – check/create a registry entry. (frun) 

 
3. If port number is 0, choose a random port between 5000 and 50000. 
 
4. sub_401C78 – creates a new thread that listens on port 6777 and accepts and processes 

connections. 
4.1. GlobalAlloc 
4.2. CreateThread 

4.2.1. StartAddress – starting address of newly created thread. 
4.2.1.1. sub_401000 – see Appendix A. 
4.2.1.2. socket 
4.2.1.3. GlobalFree 
4.2.1.4. bind 
4.2.1.5. listen 
4.2.1.6. accept 

4.2.1.6.1. CreateThread 
4.2.1.6.1.1. sub_4030F6 – receives and processes data from attacker. 

4.2.1.6.1.1.1. sub_4013D2 – wrapper function. 
4.2.1.6.1.1.1.1. CreateStreamOnHGlobal 

4.2.1.6.1.1.2. sub_4019CF – receives data from socket. 
4.2.1.6.1.1.2.1. sub_401972 – wrapper function. 

4.2.1.6.1.1.2.1.1. select 
4.2.1.6.1.1.2.2. recv 

4.2.1.6.1.1.3. sub_40146E – wrapper function. 
4.2.1.6.1.1.3.1. sub_4013F7 – wrapper function. 

4.2.1.6.1.1.3.1.1. call to unknown function in ole32.dll. 
4.2.1.6.1.1.4. sub_401000 – see Appendix A. 
4.2.1.6.1.1.5. sub_402E2B - allows uploading and executing of 

files. 
4.2.1.6.1.1.5.1. WaitForSingleObject 
4.2.1.6.1.1.5.2. sub_401000 – see Appendix A. 
4.2.1.6.1.1.5.3. sub_401481 – wrapper function. 

4.2.1.6.1.1.5.3.1. sub_40146E – wrapper function. 
4.2.1.6.1.1.5.3.2. call to unknown function in ole32.dll. 

4.2.1.6.1.1.5.4. sub_4019CF – see Appendix A. 
4.2.1.6.1.1.5.5. sub_40146E – see Appendix A. 
4.2.1.6.1.1.5.6. sub_401481 – see Appendix A. 



 60

4.2.1.6.1.1.5.7. sub_401A38 – see Appendix A. 
4.2.1.6.1.1.5.8. sub_40146E – see Appendix A. 
4.2.1.6.1.1.5.9. sub_401481 – see Appendix A. 
4.2.1.6.1.1.5.10. lstrcmpi 
4.2.1.6.1.1.5.11. send 
4.2.1.6.1.1.5.12. sub_4019CF – see Appendix A. 
4.2.1.6.1.1.5.13. sub_40146E – see Appendix A. 
4.2.1.6.1.1.5.14. sub_401481 – see Appendix A. 
4.2.1.6.1.1.5.15. sub_4019CF – see Appendix A. 
4.2.1.6.1.1.5.16. sub_40146E – see Appendix A. 
4.2.1.6.1.1.5.17. GetWindowsDirectory 
4.2.1.6.1.1.5.18. sub_401023 – create random letters. 

4.2.1.6.1.1.5.18.1. sub_4012AA – see Appendix A. 
4.2.1.6.1.1.5.19. lstrcat 
4.2.1.6.1.1.5.20. CreateFile 
4.2.1.6.1.1.5.21. WriteFile 
4.2.1.6.1.1.5.22. WinExec 
4.2.1.6.1.1.5.23. sub_401184 – kill and delete the currently 

executing virus. 
4.2.1.6.1.1.5.24. closesocket 
4.2.1.6.1.1.5.25. ReleaseMutex 

4.2.1.6.1.1.6. sub_4013E5 – wrapper function. 
4.2.1.6.2. CloseHandle 

4.2.1.7. closesocket 
4.3. CloseHandle 

 
5. sub_402E07 – creates a new thread that contacts a list of websites every 10 minutes to inform 

of infection. 
5.1. CreateThread 

5.1.1. sub_402DED – wrapper function. 
5.1.1.1. sub_402DC2 – wrapper function. 

5.1.1.1.1. sub_401669 – see Appendix A. 
5.1.1.1.2. sub_402D3D – loop through each hard coded site and contact 

them. 
5.1.1.1.2.1. GlobalAlloc 
5.1.1.1.2.2. wsprintf 
5.1.1.1.2.3. sub_402D22 – checks that the Internet connection is up. 

5.1.1.1.2.3.1. InternetGetConnectedState 
5.1.1.1.2.3.2. Sleep (for 2 seconds) 

5.1.1.1.2.4. InternetOpen 
5.1.1.1.2.5. InternetOpenUrl 
5.1.1.1.2.6. InternetCloseHandle 
5.1.1.1.2.7. GlobalFree 

5.1.1.2. Sleep (for 10 minutes) 
5.2. CloseHandle 

 
6. sub_402CCE – searches fixed drives for email addresses and emails itself to them. 

6.1. GlobalAlloc 
6.2. GetLogicalDriveStringsA 
6.3. GetDriveTypeA 
6.4. sub_402C9D – wrapper function. 

6.4.1. GlobalAlloc 
6.4.2. lstrcpyA 
6.4.3. sub_402BCB – wrapper function. 

6.4.3.1. LocalAlloc 
6.4.3.2. LocalAlloc 



 61

6.4.3.3. lstrlenA 
6.4.3.4. lstrcatA 
6.4.3.5. FindFirstFile 
6.4.3.6. lstrcatA 
6.4.3.7. sub_402B8F – see Appendix A. 

6.4.3.7.1. StrStrIA 
6.4.3.7.2. sub_402A5A – see Appendix A. 

6.4.3.7.2.1. CreateFileA 
6.4.3.7.2.2. GetFileSize 
6.4.3.7.2.3. CreateFileMappingA 
6.4.3.7.2.4. MapViewOfFile 
6.4.3.7.2.5. sub_402985 – finds an email address in a file. 

6.4.3.7.2.5.1. Sleep 
6.4.3.7.2.5.2. sub_4028A5 – see Appendix A. 
6.4.3.7.2.5.3. sub_4028F3 – see Appendix A. 
6.4.3.7.2.5.4. lstrlenA 
6.4.3.7.2.5.5. sub_40293D – see Appendix A. 
6.4.3.7.2.5.6. sub_40295A – see Appendix A. 
6.4.3.7.2.5.7. sub_402B2C – see Appendix A. 

6.4.3.7.2.6. UnmapViewOfFile 
6.4.3.7.2.7. CloseHandle 
6.4.3.7.2.8. CloseHandle 

 
 
• sub_402B2C – makes sure the email address is not to certain 

domains/usernames. 
• sub_402AF6 – see Appendix A. 
• sub_4014F3 – see Appendix A. 
• sub_40153E – see Appendix A. 
• sub_402465 – finds out which DNS server to use. 

o StrRChrA 
o sub_4020B1 – see Appendix A. 

 sub_401CBC – see Appendix A. 
• GlobalAlloc 
• GetNetworkParams 
• GlobalFree 

 sub_4013D2 – see Appendix A. 
• CreateStreamOnHGlobal 

 sub_401D2C – see Appendix A. 
• sub_401000 – see Appendix A. 
• call to unknown function in  
• lstrlenA 
• call to unknown function in  
• call to unknown function in  
• call to unknown function in  
• call to unknown function in  
• call to unknown function in  

 sub_401E1A – finds the MX record for e-mail address. 
• sub_401B25 – see Appendix A. 
• sub_401426 – see Appendix A. 
• sub_40146E – see Appendix A. 
• sub_401481 – see Appendix A. 
• sub_4019CF – see Appendix A. 
• sub_40146E – see Appendix A. 



 62

• sub_401481 – see Appendix A. 
• sub_4019CF – see Appendix A. 
• closesocket 

• sub_4013E5 – see Appendix A. 
o call to unknown function in 

• sub_40280C – wrapper function. 
• WaitForSingleObject 
• StrDupA 
• StrDupA 
• sub_40249F – see Appendix A. 

• lstrlenA 
• GlobalAlloc 
• GlobalAlloc 
• lstrcpyA 

• CreateThread 
• sub_402778 - creates the infected email and send it. 

• CloseHandle 
• ReleaseMutex 

• GlobalFree 
• lstrcpyA 

• Sleep 
• FindNextFileA 
• FindClose 
• LocalFree 
• LocalFree 

• GlobalFree 
• lstrlenA 
• GlobalFree 
 

7. Sleep (for 1 second) 
 

Important and similar parts of Bagle variant B: variant B is identical to variant 

A, except that it is compressed and several names and variables are changed. 

Important and similar parts of Bagle variant C: variant C has many identical 

parts with variant A, the most important of which include the thread that searches 

the hard drive for emails, the thread that creates the email and sends it out, and the 

thread that contacts various websites to alert the attackers of the infection. 

Important and similar parts of Bagle variant D: variant D is identical to variant 

C except for variable names and values, and thus has identical parts with variant A. 



 63

 

 

6 Bibliography 

[1] J. O. Kephart and W. C. Arnold. Automatic Extraction of Computer Virus 
Signatures. Proceedings of the 4th Virus Bulletin International Conference, R. 
Ford, ed., Virus Bulletin Ltd., Abingdon, England, 1994, pp. 178-184. 

 
[2] K. Rozinov. Reverse Code Engineering: An In-Depth Analysis of the Bagle 

Virus. August 2004, http://rozinov.sfs.poly.edu. 
 
[3] A. H. Sung, J. Xu, P. Chavez, S. Mukkamala. Static Analyzer of Vicious 

Executables (SAVE).  Proceedings of the 20th Annual Computer Security 
Applications Conference (ACSAC 2004), 2004. 

 
[4] R. Wang. Flash in the pan? Virus Bulletin, July 1998. Virus Analysis Library. 
 
[5] R. Sekar, M. Bendre, D. Dhurjati, P. Bollineni. A Fast Automaton-Based 

Method for Detecting Anomalous Program Behaviors.  IEEE Symposium on 
Security and Privacy, 2001. 

 
[6] K. Rozinov. PE File Infection Techniques. February 2005, 

http://rozinov.sfs.poly.edu. 
 
[7] M. Pietrek.  An In-Depth Look into the Win32 Portable Executable File 

Format.  MSDN Magazine, February 2002. 
 
[8] M. Pietrek.  An In-Depth Look into the Win32 Portable Executable File 

Format, Part 2.  MSDN Magazine, March 2002. 
 
[9] I. Ivanov.  API Hooking Revealed.  The Code Project.  

http://www.codeproject.com/system/hooksys.asp. 
 
[10] D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A. Valdes. Next-generation 

Intrusion Detection Expert System (NIDES): A Summary. SRI-CSL-95-07, 
SRI International, 1995. 

 
[11] S. Forrest, S. A. Hofmeyr, A. Somayaji. Intrusion Detection using Sequences 

of System Calls. Journal of Computer Security Vol. 6 (1998) pg 151-180. 
 

http://rozinov.sfs.poly.edu
http://rozinov.sfs.poly.edu
http://www.codeproject.com/system/hooksys.asp


 64

[12] P. A. Porras and P. G. Neumann. Emerald: Event monitoring enabling 
responses to anomalous live disturbances. In Proceedings of the 20th National 
Information Systems Security Conference, pages 353-365, October 1997. 

 
[13] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, W. Gong. Anomaly 

Detection Using Call Stack Information.  IEEE Symposium on Security and 
Privacy, 2003. 

 
[14] F. Cohen. Computer Viruses: Theory and Experiments. Computers and 

Security, 6:22-35, 1987. 
 
[15] D. M. Chess, S. R. White. An Undetectable Computer Virus.  In Proceedings 

of Virus Bulletin Conference, 2000. 
 
[16] W. Landi.  Undecidability of Static Analysis.  ACM Letters on Programming 

Languages and Systems, 1(4):323-337, December 1992. 
 
[17] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and 

K. Yang. On the (Im)possibility of Obfuscating Programs. In Advances in 
Cryptology -CRYPTO‘01, volume 2139 of Lecture Notes in Computer 
Science, pages 1 – 18, Santa Barbara, CA, August 2001. Springer-Verlag. 

 
[18] K. Ashcraft and D. Engler. Using programmer-written compiler extensions to 

catch security holes. In 2002 IEEE Symposium on Security and Privacy, 
pages 143–159, May 2002. 

 
[19] M. Bishop and M. Dilger. Checking For Race Conditions in File Accesses. 

Computing Systems, 9(2), 1996. 
 
[20] B.V. Chess. Improving Computer Security Using Extended Static Checking. In 

2002 IEEE Symposium on Security and Privacy, pages 160–173, May 2002. 
 
[21] M. Christodorescu, S. Jha.  Static Analysis of Executables to Detect Malicious 

Patterns.  In Proceedings of the 12th USENIX Security Symposium, 
Washington, DC, August 2003. 

 
[22] J. Bergeron, M. Debbabi, M. M. Erhioui, B. Ktari.  Static Analysis of Binary 

Code to Isolate Malicious Behaviors.  In Proceedings of the 8th Workshop on 
Enabling Technologies on Infrastructure for Collaborative Enterprises, pages 
184 – 189, 1999. 

 
[23] IA-32 Intel Architecture Software Developer's Manual, Volume 2A: 

Instruction Set Reference, A-M.  
ftp://download.intel.com/design/Pentium4/manuals/25366614.pdf 

 
[24] IDA Pro. http://www.datarescue.com/idabase/ 

ftp://download.intel.com/design/Pentium4/manuals/25366614.pdf
http://www.datarescue.com/idabase/


 65

 
[25] M. Weiser. Program Slicing.  In the Proceedings of the 5th international 

conference on Software Engineering, pages 439 - 449, 1981. 
 
[26] K. Li.  Modes, Registers and Addressing and Arithmetic Instructions (CS217 

Class Slides). 
http://www.cs.princeton.edu/courses/archive/spring04/cos217/notes/IA32-
I.pdf 

 
[27] A. Kiss, J. Jasz, G. Lehotai, T. Gyimothy.  Interprocedural Static Slicing of 

Binary Executables.  In the Proceedings of the Third IEEE International 
Workshop on Source Code Analysis and Manipulation, pages 118 – 127, Sep. 
2003. 

 
[28] C. Cifuentes, A. Fraboulet.  Intraprocedural Static Slicing of Binary 

Executables.  In the Proceedings of the Third IEEE International Conference 
on Software Maintenance, pages 188 – 195, Oct. 1997. 

 
[29] UPX - the Ultimate Packer for eXecutables.  http://upx.sourceforge.net/ 
 
[30] The Component Object Model.  

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/com/html/f5f66603-466c-496b-be29-89a8ed9361dd.asp 

 
[31] S. Horwitz, T. Reps, D. Binkley. Interprocedural Slicing Using Dependence 

Graphs. ACM Transactions on Programming Languages and Systems, 12( 
1):26-60, January 1990. 

 
[32] T. Lengauer, R. E. Tarjan. A Fast Algorithm for Finding Dominators in a 

Flowgraph. ACM Transactions on Programming Language and Systems, 
1(1):121–141, July 1979. 

 
[33] J. Ferrante, K. J. Ottenstein, J. D. Warren. The Program Dependence Graph 

and Its Use in Optimization. ACM Transactions on Programming Languages 
and Systems, 9(3):319–349, July 1987. 

 
[34] U. Nambiar, S. Kambhampati.  Answering Imprecise Database Queries. 

Presentation at WIDM 2003, New Orleans, LA.  Arizona State University. 
 
[35] T. Noreault, M. McGill, M. B. Koll.  A Performance Evaluation of Similarity 

Measures, Document Term Weighting Schemes and Representations in a 
Boolean Environment. In the Proceedings of the 3rd Annual ACM Conference 
on Research and Development in Information Retrieval, pages 57-76, 1980. 

 
[36] W. Cohen.  The WHIRL Approach to Information Integration. In the 

Proceedings of IEEE Intelligent Systems, pages 20-23, Sept/Oct 1998. 

http://www.cs.princeton.edu/courses/archive/spring04/cos217/notes/IA32-
http://upx.sourceforge.net/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/


 66

 
[37] W.C. Wilson.  Activity Pattern Analysis by Means of Sequence-Alignment 

Methods.  Journal of Environment and Planning. Vol 30, pages 1017 – 1038, 
1998. 

 
[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein.  Introduction to 

Algorithms, Second Edition.  The MIT Press, Cambridge, MA, and McGraw-
Hill Book Company, New York, NY, pages 350 – 356, 2001. 

 
[39] D. Zhang, S. Chang.  Stochastic Attributed Relational Graph Matching for 

Image Near-Duplicate Detection.  DVMM Technical Report 2004. 
 
[40] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento.  An Efficient Algorithm 

for the Inexact Matching of ARG Graphs Using a Contextual 
Transformational Model.  In the Proceedings of the International Conference 
on Pattern Recognition (ICPR '96).  Volume 3, pages 180 – 184, Aug 25 - 29, 
1996. 

 
[41] R. Giugno and D. Shasha. GraphGrep: A Fast and Universal Method for 

Querying Graphs.  In the Proceedings of the 16th International Conference on 
Pattern Recognition (ICPR'02) Volume 2. Pages 112 – 115, 2002. 

 




